Files
unicorn/qemu/target/sparc/unicorn.c
Robert Xiao 074566cf69 Slight refactoring to reduce code duplication.
This also comes with a performance bump due to inlining of reg_read/reg_write
(as they're only called once now) and the unlikely() on CHECK_REG_TYPE.
2023-06-16 15:23:42 -07:00

230 lines
6.4 KiB
C

/* Unicorn Emulator Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2015 */
/* Modified for Unicorn Engine by Chen Huitao<chenhuitao@hfmrit.com>, 2020 */
#include "sysemu/cpus.h"
#include "cpu.h"
#include "unicorn_common.h"
#include "uc_priv.h"
#include "unicorn.h"
static bool sparc_stop_interrupt(struct uc_struct *uc, int intno)
{
switch (intno) {
default:
return false;
case TT_ILL_INSN:
return true;
}
}
static void sparc_set_pc(struct uc_struct *uc, uint64_t address)
{
((CPUSPARCState *)uc->cpu->env_ptr)->pc = address;
((CPUSPARCState *)uc->cpu->env_ptr)->npc = address + 4;
}
static uint64_t sparc_get_pc(struct uc_struct *uc)
{
return ((CPUSPARCState *)uc->cpu->env_ptr)->pc;
}
static void sparc_release(void *ctx)
{
int i;
TCGContext *tcg_ctx = (TCGContext *)ctx;
SPARCCPU *cpu = (SPARCCPU *)tcg_ctx->uc->cpu;
CPUTLBDesc *d = cpu->neg.tlb.d;
CPUTLBDescFast *f = cpu->neg.tlb.f;
CPUTLBDesc *desc;
CPUTLBDescFast *fast;
release_common(ctx);
for (i = 0; i < NB_MMU_MODES; i++) {
desc = &(d[i]);
fast = &(f[i]);
g_free(desc->iotlb);
g_free(fast->table);
}
}
void sparc_reg_reset(struct uc_struct *uc)
{
CPUArchState *env = uc->cpu->env_ptr;
memset(env->gregs, 0, sizeof(env->gregs));
memset(env->fpr, 0, sizeof(env->fpr));
memset(env->regbase, 0, sizeof(env->regbase));
env->pc = 0;
env->npc = 0;
env->regwptr = env->regbase;
}
static uc_err reg_read(CPUSPARCState *env, unsigned int regid, void *value,
size_t *size)
{
uc_err ret = UC_ERR_ARG;
if (regid >= UC_SPARC_REG_G0 && regid <= UC_SPARC_REG_G7) {
CHECK_REG_TYPE(uint32_t);
*(uint32_t *)value = env->gregs[regid - UC_SPARC_REG_G0];
} else if (regid >= UC_SPARC_REG_O0 && regid <= UC_SPARC_REG_O7) {
CHECK_REG_TYPE(uint32_t);
*(uint32_t *)value = env->regwptr[regid - UC_SPARC_REG_O0];
} else if (regid >= UC_SPARC_REG_L0 && regid <= UC_SPARC_REG_L7) {
CHECK_REG_TYPE(uint32_t);
*(uint32_t *)value = env->regwptr[8 + regid - UC_SPARC_REG_L0];
} else if (regid >= UC_SPARC_REG_I0 && regid <= UC_SPARC_REG_I7) {
*(uint32_t *)value = env->regwptr[16 + regid - UC_SPARC_REG_I0];
} else {
switch (regid) {
default:
break;
case UC_SPARC_REG_PC:
CHECK_REG_TYPE(uint32_t);
*(uint32_t *)value = env->pc;
break;
}
}
return ret;
}
static uc_err reg_write(CPUSPARCState *env, unsigned int regid,
const void *value, size_t *size, int *setpc)
{
uc_err ret = UC_ERR_ARG;
if (regid >= UC_SPARC_REG_G0 && regid <= UC_SPARC_REG_G7) {
CHECK_REG_TYPE(uint32_t);
env->gregs[regid - UC_SPARC_REG_G0] = *(uint32_t *)value;
} else if (regid >= UC_SPARC_REG_O0 && regid <= UC_SPARC_REG_O7) {
CHECK_REG_TYPE(uint32_t);
env->regwptr[regid - UC_SPARC_REG_O0] = *(uint32_t *)value;
} else if (regid >= UC_SPARC_REG_L0 && regid <= UC_SPARC_REG_L7) {
CHECK_REG_TYPE(uint32_t);
env->regwptr[8 + regid - UC_SPARC_REG_L0] = *(uint32_t *)value;
} else if (regid >= UC_SPARC_REG_I0 && regid <= UC_SPARC_REG_I7) {
CHECK_REG_TYPE(uint32_t);
env->regwptr[16 + regid - UC_SPARC_REG_I0] = *(uint32_t *)value;
} else {
switch (regid) {
default:
break;
case UC_SPARC_REG_PC:
CHECK_REG_TYPE(uint32_t);
env->pc = *(uint32_t *)value;
env->npc = *(uint32_t *)value + 4;
*setpc = 1;
break;
}
}
return ret;
}
static uc_err reg_read_batch(CPUSPARCState *env, unsigned int *regs,
void *const *vals, size_t *sizes, int count)
{
int i;
for (i = 0; i < count; i++) {
unsigned int regid = regs[i];
void *value = vals[i];
uc_err err = reg_read(env, regid, value, sizes ? sizes + i : NULL);
if (err) {
return err;
}
}
return UC_ERR_OK;
}
static uc_err reg_write_batch(CPUSPARCState *env, unsigned int *regs,
const void *const *vals, size_t *sizes, int count,
int *setpc)
{
int i;
for (i = 0; i < count; i++) {
unsigned int regid = regs[i];
const void *value = vals[i];
uc_err err =
reg_write(env, regid, value, sizes ? sizes + i : NULL, setpc);
if (err) {
return err;
}
}
return UC_ERR_OK;
}
int sparc_reg_read(struct uc_struct *uc, unsigned int *regs, void *const *vals,
size_t *sizes, int count)
{
CPUSPARCState *env = &(SPARC_CPU(uc->cpu)->env);
return reg_read_batch(env, regs, vals, sizes, count);
}
int sparc_reg_write(struct uc_struct *uc, unsigned int *regs,
const void *const *vals, size_t *sizes, int count)
{
CPUSPARCState *env = &(SPARC_CPU(uc->cpu)->env);
int setpc = 0;
uc_err err = reg_write_batch(env, regs, vals, sizes, count, &setpc);
if (err) {
return err;
}
if (setpc) {
// force to quit execution and flush TB
uc->quit_request = true;
break_translation_loop(uc);
}
return UC_ERR_OK;
}
DEFAULT_VISIBILITY
int sparc_context_reg_read(struct uc_context *ctx, unsigned int *regs,
void *const *vals, size_t *sizes, int count)
{
CPUSPARCState *env = (CPUSPARCState *)ctx->data;
return reg_read_batch(env, regs, vals, sizes, count);
}
DEFAULT_VISIBILITY
int sparc_context_reg_write(struct uc_context *ctx, unsigned int *regs,
const void *const *vals, size_t *sizes, int count)
{
CPUSPARCState *env = (CPUSPARCState *)ctx->data;
int setpc = 0;
return reg_write_batch(env, regs, vals, sizes, count, &setpc);
}
static int sparc_cpus_init(struct uc_struct *uc, const char *cpu_model)
{
SPARCCPU *cpu;
cpu = cpu_sparc_init(uc);
if (cpu == NULL) {
return -1;
}
return 0;
}
DEFAULT_VISIBILITY
void sparc_uc_init(struct uc_struct *uc)
{
uc->release = sparc_release;
uc->reg_read = sparc_reg_read;
uc->reg_write = sparc_reg_write;
uc->reg_reset = sparc_reg_reset;
uc->set_pc = sparc_set_pc;
uc->get_pc = sparc_get_pc;
uc->stop_interrupt = sparc_stop_interrupt;
uc->cpus_init = sparc_cpus_init;
uc->cpu_context_size = offsetof(CPUSPARCState, irq_manager);
uc_common_init(uc);
}