/* Unicorn Emulator Engine */ /* By Nguyen Anh Quynh , 2015 */ /* Modified for Unicorn Engine by Chen Huitao, 2020 */ #include "sysemu/cpus.h" #include "cpu.h" #include "unicorn_common.h" #include "uc_priv.h" #include "unicorn.h" static bool sparc_stop_interrupt(struct uc_struct *uc, int intno) { switch (intno) { default: return false; case TT_ILL_INSN: return true; } } static void sparc_set_pc(struct uc_struct *uc, uint64_t address) { ((CPUSPARCState *)uc->cpu->env_ptr)->pc = address; ((CPUSPARCState *)uc->cpu->env_ptr)->npc = address + 4; } static uint64_t sparc_get_pc(struct uc_struct *uc) { return ((CPUSPARCState *)uc->cpu->env_ptr)->pc; } static void sparc_release(void *ctx) { int i; TCGContext *tcg_ctx = (TCGContext *)ctx; SPARCCPU *cpu = (SPARCCPU *)tcg_ctx->uc->cpu; CPUTLBDesc *d = cpu->neg.tlb.d; CPUTLBDescFast *f = cpu->neg.tlb.f; CPUTLBDesc *desc; CPUTLBDescFast *fast; release_common(ctx); for (i = 0; i < NB_MMU_MODES; i++) { desc = &(d[i]); fast = &(f[i]); g_free(desc->iotlb); g_free(fast->table); } } void sparc_reg_reset(struct uc_struct *uc) { CPUArchState *env = uc->cpu->env_ptr; memset(env->gregs, 0, sizeof(env->gregs)); memset(env->fpr, 0, sizeof(env->fpr)); memset(env->regbase, 0, sizeof(env->regbase)); env->pc = 0; env->npc = 0; env->regwptr = env->regbase; } static uc_err reg_read(CPUSPARCState *env, unsigned int regid, void *value, size_t *size) { uc_err ret = UC_ERR_ARG; if (regid >= UC_SPARC_REG_G0 && regid <= UC_SPARC_REG_G7) { CHECK_REG_TYPE(uint32_t); *(uint32_t *)value = env->gregs[regid - UC_SPARC_REG_G0]; } else if (regid >= UC_SPARC_REG_O0 && regid <= UC_SPARC_REG_O7) { CHECK_REG_TYPE(uint32_t); *(uint32_t *)value = env->regwptr[regid - UC_SPARC_REG_O0]; } else if (regid >= UC_SPARC_REG_L0 && regid <= UC_SPARC_REG_L7) { CHECK_REG_TYPE(uint32_t); *(uint32_t *)value = env->regwptr[8 + regid - UC_SPARC_REG_L0]; } else if (regid >= UC_SPARC_REG_I0 && regid <= UC_SPARC_REG_I7) { *(uint32_t *)value = env->regwptr[16 + regid - UC_SPARC_REG_I0]; } else { switch (regid) { default: break; case UC_SPARC_REG_PC: CHECK_REG_TYPE(uint32_t); *(uint32_t *)value = env->pc; break; } } return ret; } static uc_err reg_write(CPUSPARCState *env, unsigned int regid, const void *value, size_t *size, int *setpc) { uc_err ret = UC_ERR_ARG; if (regid >= UC_SPARC_REG_G0 && regid <= UC_SPARC_REG_G7) { CHECK_REG_TYPE(uint32_t); env->gregs[regid - UC_SPARC_REG_G0] = *(uint32_t *)value; } else if (regid >= UC_SPARC_REG_O0 && regid <= UC_SPARC_REG_O7) { CHECK_REG_TYPE(uint32_t); env->regwptr[regid - UC_SPARC_REG_O0] = *(uint32_t *)value; } else if (regid >= UC_SPARC_REG_L0 && regid <= UC_SPARC_REG_L7) { CHECK_REG_TYPE(uint32_t); env->regwptr[8 + regid - UC_SPARC_REG_L0] = *(uint32_t *)value; } else if (regid >= UC_SPARC_REG_I0 && regid <= UC_SPARC_REG_I7) { CHECK_REG_TYPE(uint32_t); env->regwptr[16 + regid - UC_SPARC_REG_I0] = *(uint32_t *)value; } else { switch (regid) { default: break; case UC_SPARC_REG_PC: CHECK_REG_TYPE(uint32_t); env->pc = *(uint32_t *)value; env->npc = *(uint32_t *)value + 4; *setpc = 1; break; } } return ret; } static uc_err reg_read_batch(CPUSPARCState *env, unsigned int *regs, void *const *vals, size_t *sizes, int count) { int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; void *value = vals[i]; uc_err err = reg_read(env, regid, value, sizes ? sizes + i : NULL); if (err) { return err; } } return UC_ERR_OK; } static uc_err reg_write_batch(CPUSPARCState *env, unsigned int *regs, const void *const *vals, size_t *sizes, int count, int *setpc) { int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; const void *value = vals[i]; uc_err err = reg_write(env, regid, value, sizes ? sizes + i : NULL, setpc); if (err) { return err; } } return UC_ERR_OK; } int sparc_reg_read(struct uc_struct *uc, unsigned int *regs, void *const *vals, size_t *sizes, int count) { CPUSPARCState *env = &(SPARC_CPU(uc->cpu)->env); return reg_read_batch(env, regs, vals, sizes, count); } int sparc_reg_write(struct uc_struct *uc, unsigned int *regs, const void *const *vals, size_t *sizes, int count) { CPUSPARCState *env = &(SPARC_CPU(uc->cpu)->env); int setpc = 0; uc_err err = reg_write_batch(env, regs, vals, sizes, count, &setpc); if (err) { return err; } if (setpc) { // force to quit execution and flush TB uc->quit_request = true; break_translation_loop(uc); } return UC_ERR_OK; } DEFAULT_VISIBILITY int sparc_context_reg_read(struct uc_context *ctx, unsigned int *regs, void *const *vals, size_t *sizes, int count) { CPUSPARCState *env = (CPUSPARCState *)ctx->data; return reg_read_batch(env, regs, vals, sizes, count); } DEFAULT_VISIBILITY int sparc_context_reg_write(struct uc_context *ctx, unsigned int *regs, const void *const *vals, size_t *sizes, int count) { CPUSPARCState *env = (CPUSPARCState *)ctx->data; int setpc = 0; return reg_write_batch(env, regs, vals, sizes, count, &setpc); } static int sparc_cpus_init(struct uc_struct *uc, const char *cpu_model) { SPARCCPU *cpu; cpu = cpu_sparc_init(uc); if (cpu == NULL) { return -1; } return 0; } DEFAULT_VISIBILITY void sparc_uc_init(struct uc_struct *uc) { uc->release = sparc_release; uc->reg_read = sparc_reg_read; uc->reg_write = sparc_reg_write; uc->reg_reset = sparc_reg_reset; uc->set_pc = sparc_set_pc; uc->get_pc = sparc_get_pc; uc->stop_interrupt = sparc_stop_interrupt; uc->cpus_init = sparc_cpus_init; uc->cpu_context_size = offsetof(CPUSPARCState, irq_manager); uc_common_init(uc); }