Refactor tests and add a few more

This commit is contained in:
Robert Xiao
2023-05-13 10:55:13 -07:00
parent 77d4a1d8b1
commit d4df61b4c5
7 changed files with 488 additions and 195 deletions

View File

@@ -2,226 +2,192 @@ package tests;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertThrows;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import static org.junit.Assert.assertTrue;
import org.junit.Test;
import unicorn.CodeHook;
import unicorn.MemRegion;
import unicorn.TlbFillHook;
import unicorn.Unicorn;
import unicorn.UnicornException;
import unicorn.X86_Float80;
/** Test miscellaneous features that don't fall into the register, memory
* or hook API */
public class FunctionalityTests {
@Test
public void testMemRegions() {
Unicorn uc = new Unicorn(Unicorn.UC_ARCH_ARM64, Unicorn.UC_MODE_ARM);
long ADDR1 = 0x10000;
long ADDR2 = 0xdeadbeeffeed1000L;
uc.mem_map(ADDR1, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL);
uc.mem_map(ADDR2, 4096, Unicorn.UC_PROT_READ);
MemRegion[] arr = uc.mem_regions();
assertEquals("two memory regions", 2, arr.length);
assertEquals("begin", ADDR1, arr[0].begin);
assertEquals("end", ADDR1 + 2 * 1024 * 1024 - 1, arr[0].end);
assertEquals("perms", Unicorn.UC_PROT_ALL, arr[0].perms);
assertEquals("begin", ADDR2, arr[1].begin);
assertEquals("end", ADDR2 + 4096 - 1, arr[1].end);
assertEquals("perms", Unicorn.UC_PROT_READ, arr[1].perms);
uc.close();
public void testStatics() {
assertEquals(true, Unicorn.arch_supported(Unicorn.UC_ARCH_X86));
assertEquals(false, Unicorn.arch_supported(Unicorn.UC_ARCH_MAX + 1));
assertTrue("version check", Unicorn.version() >= 0x02000100);
assertEquals("OK (UC_ERR_OK)", Unicorn.strerror(Unicorn.UC_ERR_OK));
assertEquals("Invalid handle (UC_ERR_HANDLE)",
Unicorn.strerror(Unicorn.UC_ERR_HANDLE));
}
@Test
public void testCreation() {
assertThrows(UnicornException.class,
() -> new Unicorn(Unicorn.UC_ARCH_MAX + 1, 0));
if (Unicorn.arch_supported(Unicorn.UC_ARCH_X86)) {
new Unicorn(Unicorn.UC_ARCH_X86, Unicorn.UC_MODE_16);
new Unicorn(Unicorn.UC_ARCH_X86, Unicorn.UC_MODE_32);
new Unicorn(Unicorn.UC_ARCH_X86, Unicorn.UC_MODE_64);
assertThrows(UnicornException.class,
() -> new Unicorn(Unicorn.UC_ARCH_X86,
Unicorn.UC_MODE_BIG_ENDIAN));
}
if (Unicorn.arch_supported(Unicorn.UC_ARCH_M68K)) {
new Unicorn(Unicorn.UC_ARCH_M68K, Unicorn.UC_MODE_BIG_ENDIAN);
assertThrows(UnicornException.class,
() -> new Unicorn(Unicorn.UC_ARCH_M68K,
Unicorn.UC_MODE_LITTLE_ENDIAN));
}
if (Unicorn.arch_supported(Unicorn.UC_ARCH_ARM)) {
new Unicorn(Unicorn.UC_ARCH_ARM, 0);
new Unicorn(Unicorn.UC_ARCH_ARM, Unicorn.UC_MODE_BIG_ENDIAN);
new Unicorn(Unicorn.UC_ARCH_ARM, Unicorn.UC_MODE_THUMB);
}
if (Unicorn.arch_supported(Unicorn.UC_ARCH_ARM64)) {
new Unicorn(Unicorn.UC_ARCH_ARM64, 0);
new Unicorn(Unicorn.UC_ARCH_ARM64, Unicorn.UC_MODE_BIG_ENDIAN);
}
if (Unicorn.arch_supported(Unicorn.UC_ARCH_MIPS)) {
new Unicorn(Unicorn.UC_ARCH_MIPS,
Unicorn.UC_MODE_BIG_ENDIAN | Unicorn.UC_MODE_32);
new Unicorn(Unicorn.UC_ARCH_MIPS,
Unicorn.UC_MODE_LITTLE_ENDIAN | Unicorn.UC_MODE_32);
new Unicorn(Unicorn.UC_ARCH_MIPS,
Unicorn.UC_MODE_BIG_ENDIAN | Unicorn.UC_MODE_64);
new Unicorn(Unicorn.UC_ARCH_MIPS,
Unicorn.UC_MODE_LITTLE_ENDIAN | Unicorn.UC_MODE_64);
assertThrows(UnicornException.class,
() -> new Unicorn(Unicorn.UC_ARCH_MIPS, Unicorn.UC_MODE_16));
}
if (Unicorn.arch_supported(Unicorn.UC_ARCH_SPARC)) {
new Unicorn(Unicorn.UC_ARCH_SPARC,
Unicorn.UC_MODE_BIG_ENDIAN | Unicorn.UC_MODE_32);
new Unicorn(Unicorn.UC_ARCH_SPARC,
Unicorn.UC_MODE_BIG_ENDIAN | Unicorn.UC_MODE_64);
assertThrows(UnicornException.class,
() -> new Unicorn(Unicorn.UC_ARCH_SPARC,
Unicorn.UC_MODE_LITTLE_ENDIAN | Unicorn.UC_MODE_32));
}
if (Unicorn.arch_supported(Unicorn.UC_ARCH_PPC)) {
new Unicorn(Unicorn.UC_ARCH_PPC,
Unicorn.UC_MODE_BIG_ENDIAN | Unicorn.UC_MODE_32);
new Unicorn(Unicorn.UC_ARCH_PPC,
Unicorn.UC_MODE_BIG_ENDIAN | Unicorn.UC_MODE_64);
assertThrows(UnicornException.class,
() -> new Unicorn(Unicorn.UC_ARCH_PPC,
Unicorn.UC_MODE_LITTLE_ENDIAN | Unicorn.UC_MODE_32));
}
if (Unicorn.arch_supported(Unicorn.UC_ARCH_RISCV)) {
new Unicorn(Unicorn.UC_ARCH_RISCV, Unicorn.UC_MODE_32);
new Unicorn(Unicorn.UC_ARCH_RISCV, Unicorn.UC_MODE_64);
}
if (Unicorn.arch_supported(Unicorn.UC_ARCH_S390X)) {
new Unicorn(Unicorn.UC_ARCH_S390X, Unicorn.UC_MODE_BIG_ENDIAN);
assertThrows(UnicornException.class,
() -> new Unicorn(Unicorn.UC_ARCH_S390X,
Unicorn.UC_MODE_LITTLE_ENDIAN));
new Unicorn(Unicorn.UC_ARCH_TRICORE, 0);
}
}
@Test
public void testThreading() {
// EB FE - label: jmp label
final byte[] X86_CODE = { -21, -2 };
long ADDRESS = 0x100000;
Unicorn u = new Unicorn(Unicorn.UC_ARCH_X86, Unicorn.UC_MODE_32);
u.mem_map(ADDRESS, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL);
u.mem_write(ADDRESS, X86_CODE);
new Thread(() -> {
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
u.emu_stop();
}).start();
u.emu_start(ADDRESS, ADDRESS + X86_CODE.length, 0, 0);
u.close();
}
@Test
public void testContext() {
Unicorn uc = new Unicorn(Unicorn.UC_ARCH_ARM64, Unicorn.UC_MODE_ARM);
uc.reg_write(Unicorn.UC_ARM64_REG_X0, 0xdeadbeef);
uc.reg_write(Unicorn.UC_ARM64_REG_X0, 0xdeadbeefL);
Unicorn.Context ctx = uc.context_save();
uc.reg_write(Unicorn.UC_ARM64_REG_X0, 0xfeedface);
assertEquals("X0 changed", 0xfeedface,
uc.reg_read(Unicorn.UC_ARM64_REG_X0));
assertEquals(0xdeadbeefL, uc.reg_read(Unicorn.UC_ARM64_REG_X0));
assertEquals(0xdeadbeefL, ctx.reg_read(Unicorn.UC_ARM64_REG_X0));
uc.reg_write(Unicorn.UC_ARM64_REG_X0, 0xfeedfaceL);
assertEquals(0xfeedfaceL, uc.reg_read(Unicorn.UC_ARM64_REG_X0));
assertEquals(0xdeadbeefL, ctx.reg_read(Unicorn.UC_ARM64_REG_X0));
uc.context_restore(ctx);
assertEquals("X0 restored", 0xdeadbeef,
uc.reg_read(Unicorn.UC_ARM64_REG_X0));
uc.reg_write(Unicorn.UC_ARM64_REG_X0, 0xfee1dead);
assertEquals(0xdeadbeefL, uc.reg_read(Unicorn.UC_ARM64_REG_X0));
assertEquals(0xdeadbeefL, ctx.reg_read(Unicorn.UC_ARM64_REG_X0));
uc.reg_write(Unicorn.UC_ARM64_REG_X0, 0xfee1deadL);
assertEquals(0xfee1deadL, uc.reg_read(Unicorn.UC_ARM64_REG_X0));
assertEquals(0xdeadbeefL, ctx.reg_read(Unicorn.UC_ARM64_REG_X0));
uc.context_update(ctx);
assertEquals("X0 changed", 0xfee1dead,
uc.reg_read(Unicorn.UC_ARM64_REG_X0));
uc.reg_write(Unicorn.UC_ARM64_REG_X0, 0xdeadbeef);
assertEquals("X0 changed", 0xdeadbeef,
uc.reg_read(Unicorn.UC_ARM64_REG_X0));
assertEquals(0xfee1deadL, uc.reg_read(Unicorn.UC_ARM64_REG_X0));
assertEquals(0xfee1deadL, ctx.reg_read(Unicorn.UC_ARM64_REG_X0));
uc.reg_write(Unicorn.UC_ARM64_REG_X0, 0xdeadbeefL);
assertEquals(0xdeadbeefL, uc.reg_read(Unicorn.UC_ARM64_REG_X0));
assertEquals(0xfee1deadL, ctx.reg_read(Unicorn.UC_ARM64_REG_X0));
uc.context_restore(ctx);
assertEquals("X0 restored", 0xfee1dead,
uc.reg_read(Unicorn.UC_ARM64_REG_X0));
assertEquals(0xfee1deadL, uc.reg_read(Unicorn.UC_ARM64_REG_X0));
assertEquals(0xfee1deadL, ctx.reg_read(Unicorn.UC_ARM64_REG_X0));
uc.close();
}
@Test
public void testMmio() {
// mov ecx, [0xaaaaaaa8]; inc ecx; dec edx; mov [0xaaaaaaa8], ecx; inc ecx; dec edx
final byte[] X86_CODE32_MEM_READ_WRITE =
{ -117, 13, -88, -86, -86, -86, 65, 74, -119, 13, -88, -86, -86,
-86, 65, 74 };
public void testOldContext() {
Unicorn uc = new Unicorn(Unicorn.UC_ARCH_ARM64, Unicorn.UC_MODE_ARM);
uc.reg_write(Unicorn.UC_ARM64_REG_X0, 0xdeadbeefL);
long ctx = uc.context_alloc();
uc.context_save(ctx);
assertEquals(0xdeadbeefL, uc.reg_read(Unicorn.UC_ARM64_REG_X0));
long ADDRESS = 0x100000;
uc.reg_write(Unicorn.UC_ARM64_REG_X0, 0xfeedfaceL);
assertEquals(0xfeedfaceL, uc.reg_read(Unicorn.UC_ARM64_REG_X0));
Unicorn u = new Unicorn(Unicorn.UC_ARCH_X86, Unicorn.UC_MODE_32);
// map 2MB memory for this emulation
u.mem_map(ADDRESS, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL);
uc.context_restore(ctx);
assertEquals(0xdeadbeefL, uc.reg_read(Unicorn.UC_ARM64_REG_X0));
// write machine code to be emulated to memory
u.mem_write(ADDRESS, X86_CODE32_MEM_READ_WRITE);
uc.reg_write(Unicorn.UC_ARM64_REG_X0, 0xfee1deadL);
assertEquals(0xfee1deadL, uc.reg_read(Unicorn.UC_ARM64_REG_X0));
// initialize machine registers
u.reg_write(Unicorn.UC_X86_REG_ECX, 0x12345678);
u.reg_write(Unicorn.UC_X86_REG_EDX, 0x22334455);
uc.context_save(ctx);
assertEquals(0xfee1deadL, uc.reg_read(Unicorn.UC_ARM64_REG_X0));
u.mmio_map(0xaaaaa000L, 0x1000, (uc, offset, size, user_data) -> {
assertEquals("read offset", 0xaa8, offset);
assertEquals("read size", 4, size);
assertEquals("read user_data", "read_data", user_data);
return 0x44556677;
}, "read_data", (uc, offset, size, value, user_data) -> {
assertEquals("write offset", 0xaa8, offset);
assertEquals("write size", 4, size);
assertEquals("write value", 0x44556678, value);
assertEquals("write user_data", "write_data", user_data);
}, "write_data");
uc.reg_write(Unicorn.UC_ARM64_REG_X0, 0xdeadbeefL);
assertEquals(0xdeadbeefL, uc.reg_read(Unicorn.UC_ARM64_REG_X0));
u.emu_start(ADDRESS, ADDRESS + X86_CODE32_MEM_READ_WRITE.length, 0, 0);
uc.context_restore(ctx);
assertEquals(0xfee1deadL, uc.reg_read(Unicorn.UC_ARM64_REG_X0));
assertEquals("ecx", 0x44556679, u.reg_read(Unicorn.UC_X86_REG_ECX));
assertEquals("edx", 0x22334453, u.reg_read(Unicorn.UC_X86_REG_EDX));
u.close();
}
@Test
public void testMemMapPtr() {
ByteBuffer buffer =
ByteBuffer.allocateDirect(0x1000).order(ByteOrder.LITTLE_ENDIAN);
final byte[] X86_CODE32_MEM_WRITE =
{ -119, 13, -86, -86, -86, -86, 65, 74 };
long ADDRESS = 0x100000;
Unicorn u = new Unicorn(Unicorn.UC_ARCH_X86, Unicorn.UC_MODE_32);
u.mem_map(ADDRESS, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL);
u.mem_map_ptr(0xaaaaa000L, buffer, Unicorn.UC_PROT_ALL);
u.mem_write(ADDRESS, X86_CODE32_MEM_WRITE);
u.reg_write(Unicorn.UC_X86_REG_ECX, 0x12345678);
u.emu_start(ADDRESS, ADDRESS + X86_CODE32_MEM_WRITE.length, 0, 0);
assertEquals("buffer contents", 0x12345678, buffer.getInt(0xaaa));
u.close();
}
@Test
public void testTlbHook() {
// mov ecx, [0xaaaaaaa8]
final byte[] X86_CODE32_MEM_READ = { -117, 13, -88, -86, -86, -86 };
long ADDRESS = 0x100000;
Unicorn u = new Unicorn(Unicorn.UC_ARCH_X86, Unicorn.UC_MODE_32);
u.mem_map(ADDRESS, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL);
u.mem_map(0xbbbbb000L, 0x1000, Unicorn.UC_PROT_READ);
u.hook_add((TlbFillHook) (uc, address, type, user_data) -> {
assertEquals("fill hook address", 0xaaaaa000L, address);
assertEquals("fill hook type", Unicorn.UC_MEM_READ, type);
assertEquals("fill hook user", "fill_hook", user_data);
return 0xbbbbb000L | Unicorn.UC_PROT_READ;
}, 0xaaaaa000L, 0xaaaab000L, "fill_hook");
u.mem_write(ADDRESS, X86_CODE32_MEM_READ);
u.mem_write(0xbbbbbaa8L, new byte[] { 1, 2, 3, 4 });
u.reg_write(Unicorn.UC_X86_REG_ECX, 0x12345678);
u.ctl_tlb_mode(Unicorn.UC_TLB_VIRTUAL);
u.emu_start(ADDRESS, ADDRESS + X86_CODE32_MEM_READ.length, 0, 0);
assertEquals("ecx", u.reg_read(Unicorn.UC_X86_REG_ECX), 0x04030201);
u.close();
}
@Test
public void testX86ReadFloat80() {
// fldl2e; fsin
final byte[] X86_CODE = { -39, -22, -39, -2 };
long ADDRESS = 0x100000;
Unicorn u = new Unicorn(Unicorn.UC_ARCH_X86, Unicorn.UC_MODE_32);
u.mem_map(ADDRESS, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL);
u.mem_write(ADDRESS, X86_CODE);
u.emu_start(ADDRESS, ADDRESS + X86_CODE.length, 0, 0);
X86_Float80 reg1 =
(X86_Float80) u.reg_read(Unicorn.UC_X86_REG_ST0, null);
X86_Float80 reg2 =
(X86_Float80) u.reg_read(Unicorn.UC_X86_REG_FP7, null);
assertEquals(null, ADDRESS, ADDRESS, ADDRESS);
assertEquals(Math.sin(Math.log(Math.E) / Math.log(2)), reg1.toDouble(),
1e-12);
assertEquals(reg1.toDouble(), reg2.toDouble(), 1e-12);
u.close();
}
@Test
public void testX86WriteFloat80() {
// fsin
final byte[] X86_CODE = { -39, -2 };
long ADDRESS = 0x100000;
Unicorn u = new Unicorn(Unicorn.UC_ARCH_X86, Unicorn.UC_MODE_32);
u.mem_map(ADDRESS, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL);
u.mem_write(ADDRESS, X86_CODE);
X86_Float80 reg = X86_Float80.fromDouble(-1.1);
u.reg_write(Unicorn.UC_X86_REG_ST0, reg);
u.emu_start(ADDRESS, ADDRESS + X86_CODE.length, 0, 0);
reg = (X86_Float80) u.reg_read(Unicorn.UC_X86_REG_ST0, null);
assertEquals(Math.sin(-1.1), reg.toDouble(), 1e-12);
u.close();
}
@Test
public void testRemoveHook() {
byte[] X86_CODE = { 0x40, 0x40, 0x40, 0x40 }; // (inc eax) x 4
int ADDRESS = 0x10000;
final int[] hook_accum = { 0 };
Unicorn u = new Unicorn(Unicorn.UC_ARCH_X86, Unicorn.UC_MODE_32);
u.mem_map(ADDRESS, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL);
u.mem_write(ADDRESS, X86_CODE);
CodeHook hook =
(uc, address, size, user) -> hook_accum[0] += (int) user;
long h1 = u.hook_add(hook, ADDRESS, ADDRESS, 1);
long h2 = u.hook_add(hook, ADDRESS + 1, ADDRESS + 1, 2);
long h3 = u.hook_add(hook, ADDRESS + 2, ADDRESS + 2, 4);
long h4 = u.hook_add(hook, ADDRESS + 3, ADDRESS + 3, 8);
hook_accum[0] = 0;
u.emu_start(ADDRESS, ADDRESS + X86_CODE.length, 0, 0);
assertEquals(15, hook_accum[0]);
u.hook_del(h2);
hook_accum[0] = 0;
u.emu_start(ADDRESS, ADDRESS + X86_CODE.length, 0, 0);
assertEquals(13, hook_accum[0]);
u.hook_del(hook);
hook_accum[0] = 0;
u.emu_start(ADDRESS, ADDRESS + X86_CODE.length, 0, 0);
assertEquals(0, hook_accum[0]);
assertThrows(UnicornException.class, () -> u.hook_del(h1));
assertThrows(UnicornException.class, () -> u.hook_del(h3));
assertThrows(UnicornException.class, () -> u.hook_del(h4));
u.close();
uc.free(ctx);
uc.close();
}
}

View File

@@ -0,0 +1,130 @@
package tests;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertThrows;
import org.junit.Test;
import unicorn.CodeHook;
import unicorn.EdgeGeneratedHook;
import unicorn.TlbFillHook;
import unicorn.TranslationBlock;
import unicorn.Unicorn;
import unicorn.UnicornException;
public class HookTests {
private static void assertTranslationBlock(TranslationBlock expected,
TranslationBlock actual) {
assertEquals(expected.pc, actual.pc);
assertEquals(expected.icount, actual.icount);
assertEquals(expected.size, actual.size);
}
@Test
public void testEdgeHook() {
/*
00000000 83FB01 cmp ebx,byte +0x1
00000003 7405 jz 0xa
00000005 B802000000 mov eax,0x2
0000000A 40 inc eax
0000000B EBFE jmp short 0xb
*/
final byte[] X86_CODE =
{ -125, -5, 1, 116, 5, -72, 2, 0, 0, 0, 64, -21, -2 };
final TranslationBlock[] expectedTb = { null, null };
long ADDRESS = 0x100000;
Unicorn u = new Unicorn(Unicorn.UC_ARCH_X86, Unicorn.UC_MODE_32);
u.mem_map(ADDRESS, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL);
u.mem_write(ADDRESS, X86_CODE);
expectedTb[1] = new TranslationBlock(ADDRESS, 2, 5);
u.hook_add((EdgeGeneratedHook) (uc, cur_tb, prev_tb, user) -> {
assertTranslationBlock(expectedTb[0], cur_tb);
assertTranslationBlock(expectedTb[1], prev_tb);
assertEquals("user data", user);
}, ADDRESS, ADDRESS + 10, "user data");
// TODO(nneonneo): why is icount 2/3 in the subsequent blocks?
expectedTb[0] = new TranslationBlock(ADDRESS + 10, 2, 1);
u.reg_write(Unicorn.UC_X86_REG_EBX, 1);
u.emu_start(ADDRESS, ADDRESS + 11, 0, 0);
expectedTb[0] = new TranslationBlock(ADDRESS + 5, 3, 6);
u.reg_write(Unicorn.UC_X86_REG_EBX, 0);
u.emu_start(ADDRESS, ADDRESS + 11, 0, 0);
assertTranslationBlock(new TranslationBlock(ADDRESS, 2, 5),
u.ctl_request_cache(ADDRESS));
// TODO(nneonneo): I don't totally understand this output! Why 8 bytes at address 5?
assertTranslationBlock(new TranslationBlock(ADDRESS + 5, 3, 8),
u.ctl_request_cache(ADDRESS + 5));
u.close();
}
@Test
public void testTlbHook() {
// mov ecx, [0xaaaaaaa8]
final byte[] X86_CODE32_MEM_READ = { -117, 13, -88, -86, -86, -86 };
long ADDRESS = 0x100000;
Unicorn u = new Unicorn(Unicorn.UC_ARCH_X86, Unicorn.UC_MODE_32);
u.mem_map(ADDRESS, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL);
u.mem_map(0xbbbbb000L, 0x1000, Unicorn.UC_PROT_READ);
u.hook_add((TlbFillHook) (uc, address, type, user_data) -> {
assertEquals("fill hook address", 0xaaaaa000L, address);
assertEquals("fill hook type", Unicorn.UC_MEM_READ, type);
assertEquals("fill hook user", "fill_hook", user_data);
return 0xbbbbb000L | Unicorn.UC_PROT_READ;
}, 0xaaaaa000L, 0xaaaab000L, "fill_hook");
u.mem_write(ADDRESS, X86_CODE32_MEM_READ);
u.mem_write(0xbbbbbaa8L, new byte[] { 1, 2, 3, 4 });
u.reg_write(Unicorn.UC_X86_REG_ECX, 0x12345678);
u.ctl_tlb_mode(Unicorn.UC_TLB_VIRTUAL);
u.emu_start(ADDRESS, ADDRESS + X86_CODE32_MEM_READ.length, 0, 0);
assertEquals("ecx", u.reg_read(Unicorn.UC_X86_REG_ECX), 0x04030201);
u.close();
}
@Test
public void testRemoveHook() {
byte[] X86_CODE = { 0x40, 0x40, 0x40, 0x40 }; // (inc eax) x 4
int ADDRESS = 0x10000;
final int[] hook_accum = { 0 };
Unicorn u = new Unicorn(Unicorn.UC_ARCH_X86, Unicorn.UC_MODE_32);
u.mem_map(ADDRESS, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL);
u.mem_write(ADDRESS, X86_CODE);
CodeHook hook =
(uc, address, size, user) -> hook_accum[0] += (int) user;
long h1 = u.hook_add(hook, ADDRESS, ADDRESS, 1);
long h2 = u.hook_add(hook, ADDRESS + 1, ADDRESS + 1, 2);
long h3 = u.hook_add(hook, ADDRESS + 2, ADDRESS + 2, 4);
long h4 = u.hook_add(hook, ADDRESS + 3, ADDRESS + 3, 8);
hook_accum[0] = 0;
u.emu_start(ADDRESS, ADDRESS + X86_CODE.length, 0, 0);
assertEquals(15, hook_accum[0]);
u.hook_del(h2);
hook_accum[0] = 0;
u.emu_start(ADDRESS, ADDRESS + X86_CODE.length, 0, 0);
assertEquals(13, hook_accum[0]);
u.hook_del(hook);
hook_accum[0] = 0;
u.emu_start(ADDRESS, ADDRESS + X86_CODE.length, 0, 0);
assertEquals(0, hook_accum[0]);
assertThrows(UnicornException.class, () -> u.hook_del(h1));
assertThrows(UnicornException.class, () -> u.hook_del(h3));
assertThrows(UnicornException.class, () -> u.hook_del(h4));
u.close();
}
}

View File

@@ -0,0 +1,138 @@
package tests;
import static org.junit.Assert.assertEquals;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import org.junit.Test;
import unicorn.MemRegion;
import unicorn.Unicorn;
public class MemTests {
private static void assertMemRegion(long address, long size,
int perms, MemRegion actual) {
assertEquals(address, actual.begin);
assertEquals(address + size - 1, actual.end);
assertEquals(perms, actual.perms);
}
@Test
public void testMemRegions() {
Unicorn uc = new Unicorn(Unicorn.UC_ARCH_ARM64, Unicorn.UC_MODE_ARM);
long ADDR1 = 0x10000;
long ADDR2 = 0xdeadbeeffeed1000L;
uc.mem_map(ADDR1, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL);
uc.mem_map(ADDR2, 4096, Unicorn.UC_PROT_READ);
MemRegion[] arr = uc.mem_regions();
assertEquals("two memory regions", 2, arr.length);
assertMemRegion(ADDR1, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL, arr[0]);
assertMemRegion(ADDR2, 4096, Unicorn.UC_PROT_READ, arr[1]);
uc.close();
}
@Test
public void testMemRegions2() {
Unicorn u = new Unicorn(Unicorn.UC_ARCH_TRICORE, 0);
u.mem_map(0x10000, 0x10000, Unicorn.UC_PROT_ALL);
u.mem_map(0x30000, 0x10000, Unicorn.UC_PROT_READ);
u.mem_map(0x50000, 0x10000,
Unicorn.UC_PROT_READ | Unicorn.UC_PROT_WRITE);
u.mem_map(0x70000, 0x20000, 0);
u.mem_protect(0x80000, 0x10000, Unicorn.UC_PROT_EXEC);
ByteBuffer buf = ByteBuffer.allocateDirect(0x10000);
u.mem_map_ptr(0x110000, buf, Unicorn.UC_PROT_ALL);
u.mmio_map(0x210000, 0x10000,
(uc, offset, size, user_data) -> 0x41414141,
null, (uc, offset, size, value, user_data) -> {
}, null);
u.mmio_map(0x230000, 0x10000,
(uc, offset, size, user_data) -> 0x41414141,
null, null, null);
u.mmio_map(0x250000, 0x10000, null, null,
(uc, offset, size, value, user_data) -> {
}, null);
u.mmio_map(0x270000, 0x10000, null, null, null, null);
MemRegion[] mrs = u.mem_regions();
assertEquals(10, mrs.length);
assertMemRegion(0x10000, 0x10000, Unicorn.UC_PROT_ALL, mrs[0]);
assertMemRegion(0x30000, 0x10000, Unicorn.UC_PROT_READ, mrs[1]);
assertMemRegion(0x50000, 0x10000,
Unicorn.UC_PROT_READ | Unicorn.UC_PROT_WRITE, mrs[2]);
assertMemRegion(0x70000, 0x10000, Unicorn.UC_PROT_NONE, mrs[3]);
assertMemRegion(0x80000, 0x10000, Unicorn.UC_PROT_EXEC, mrs[4]);
assertMemRegion(0x110000, 0x10000, Unicorn.UC_PROT_ALL, mrs[5]);
assertMemRegion(0x210000, 0x10000,
Unicorn.UC_PROT_READ | Unicorn.UC_PROT_WRITE, mrs[6]);
assertMemRegion(0x230000, 0x10000, Unicorn.UC_PROT_READ, mrs[7]);
assertMemRegion(0x250000, 0x10000, Unicorn.UC_PROT_WRITE, mrs[8]);
assertMemRegion(0x270000, 0x10000, Unicorn.UC_PROT_NONE, mrs[9]);
u.close();
}
@Test
public void testMmio() {
// mov ecx, [0xaaaaaaa8]; inc ecx; dec edx; mov [0xaaaaaaa8], ecx; inc ecx; dec edx
final byte[] X86_CODE32_MEM_READ_WRITE =
{ -117, 13, -88, -86, -86, -86, 65, 74, -119, 13, -88, -86, -86,
-86, 65, 74 };
long ADDRESS = 0x100000;
Unicorn u = new Unicorn(Unicorn.UC_ARCH_X86, Unicorn.UC_MODE_32);
// map 2MB memory for this emulation
u.mem_map(ADDRESS, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL);
// write machine code to be emulated to memory
u.mem_write(ADDRESS, X86_CODE32_MEM_READ_WRITE);
// initialize machine registers
u.reg_write(Unicorn.UC_X86_REG_ECX, 0x12345678);
u.reg_write(Unicorn.UC_X86_REG_EDX, 0x22334455);
u.mmio_map(0xaaaaa000L, 0x1000, (uc, offset, size, user_data) -> {
assertEquals("read offset", 0xaa8, offset);
assertEquals("read size", 4, size);
assertEquals("read user_data", "read_data", user_data);
return 0x44556677;
}, "read_data", (uc, offset, size, value, user_data) -> {
assertEquals("write offset", 0xaa8, offset);
assertEquals("write size", 4, size);
assertEquals("write value", 0x44556678, value);
assertEquals("write user_data", "write_data", user_data);
}, "write_data");
u.emu_start(ADDRESS, ADDRESS + X86_CODE32_MEM_READ_WRITE.length, 0, 0);
assertEquals("ecx", 0x44556679, u.reg_read(Unicorn.UC_X86_REG_ECX));
assertEquals("edx", 0x22334453, u.reg_read(Unicorn.UC_X86_REG_EDX));
u.close();
}
@Test
public void testMemMapPtr() {
ByteBuffer buffer =
ByteBuffer.allocateDirect(0x1000).order(ByteOrder.LITTLE_ENDIAN);
final byte[] X86_CODE32_MEM_WRITE =
{ -119, 13, -86, -86, -86, -86, 65, 74 };
long ADDRESS = 0x100000;
Unicorn u = new Unicorn(Unicorn.UC_ARCH_X86, Unicorn.UC_MODE_32);
u.mem_map(ADDRESS, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL);
u.mem_map_ptr(0xaaaaa000L, buffer, Unicorn.UC_PROT_ALL);
u.mem_write(ADDRESS, X86_CODE32_MEM_WRITE);
u.reg_write(Unicorn.UC_X86_REG_ECX, 0x12345678);
u.emu_start(ADDRESS, ADDRESS + X86_CODE32_MEM_WRITE.length, 0, 0);
assertEquals("buffer contents", 0x12345678, buffer.getInt(0xaaa));
u.close();
}
}

View File

@@ -0,0 +1,50 @@
package tests;
import static org.junit.Assert.assertEquals;
import org.junit.Test;
import unicorn.Unicorn;
import unicorn.X86_Float80;
public class RegTests {
@Test
public void testX86ReadFloat80() {
// fldl2e; fsin
final byte[] X86_CODE = { -39, -22, -39, -2 };
long ADDRESS = 0x100000;
Unicorn u = new Unicorn(Unicorn.UC_ARCH_X86, Unicorn.UC_MODE_32);
u.mem_map(ADDRESS, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL);
u.mem_write(ADDRESS, X86_CODE);
u.emu_start(ADDRESS, ADDRESS + X86_CODE.length, 0, 0);
X86_Float80 reg1 =
(X86_Float80) u.reg_read(Unicorn.UC_X86_REG_ST0, null);
X86_Float80 reg2 =
(X86_Float80) u.reg_read(Unicorn.UC_X86_REG_FP7, null);
assertEquals(null, ADDRESS, ADDRESS, ADDRESS);
assertEquals(Math.sin(Math.log(Math.E) / Math.log(2)), reg1.toDouble(),
1e-12);
assertEquals(reg1.toDouble(), reg2.toDouble(), 1e-12);
u.close();
}
@Test
public void testX86WriteFloat80() {
// fsin
final byte[] X86_CODE = { -39, -2 };
long ADDRESS = 0x100000;
Unicorn u = new Unicorn(Unicorn.UC_ARCH_X86, Unicorn.UC_MODE_32);
u.mem_map(ADDRESS, 2 * 1024 * 1024, Unicorn.UC_PROT_ALL);
u.mem_write(ADDRESS, X86_CODE);
X86_Float80 reg = X86_Float80.fromDouble(-1.1);
u.reg_write(Unicorn.UC_X86_REG_ST0, reg);
u.emu_start(ADDRESS, ADDRESS + X86_CODE.length, 0, 0);
reg = (X86_Float80) u.reg_read(Unicorn.UC_X86_REG_ST0, null);
assertEquals(Math.sin(-1.1), reg.toDouble(), 1e-12);
u.close();
}
}

View File

@@ -34,7 +34,7 @@ public class MemRegion {
@Override
public String toString() {
return "MemRegion [begin=" + begin + ", end=" + end + ", perms=" +
perms + "]";
return String.format("MemRegion [begin=0x%x, end=0x%x, perms=%d]",
begin, end, perms);
}
}

View File

@@ -32,4 +32,10 @@ public class TranslationBlock {
this.icount = icount;
this.size = size;
}
@Override
public String toString() {
return String.format("TranslationBlock [pc=0x%x, icount=%d, size=%d]",
pc, icount, size);
}
}

View File

@@ -563,8 +563,11 @@ public class Unicorn
* {@code errno} may not retain its old value once accessed.
*
* @return Error code, one of the {@code UC_ERR_*} constants.
* @deprecated Not actually useful in Java; error numbers are always
* converted into {@link UnicornException} exceptions.
* @see UnicornConst
*/
@Deprecated
public int errno() {
return _errno(nativePtr);
}