Some structs, specically CPUARMState is 16-bytes aligned. This causes segment fault because gcc tends to vectorize the assignment of the struct with infamous movaps tricks. Without this patch, we fail on manylinux with 2.17 glibc in release mode in i686. qemu_memalign will ensure the alignment across platforms.
2205 lines
71 KiB
C
2205 lines
71 KiB
C
/*
|
|
* QEMU ARM CPU
|
|
*
|
|
* Copyright (c) 2012 SUSE LINUX Products GmbH
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see
|
|
* <http://www.gnu.org/licenses/gpl-2.0.html>
|
|
*/
|
|
|
|
#include "cpu.h"
|
|
#include "internals.h"
|
|
#include "exec/exec-all.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "fpu/softfloat.h"
|
|
|
|
#include <uc_priv.h>
|
|
|
|
static void arm_cpu_set_pc(CPUState *cs, vaddr value)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
if (is_a64(env)) {
|
|
env->pc = value;
|
|
env->thumb = 0;
|
|
} else {
|
|
env->regs[15] = value & ~1;
|
|
env->thumb = value & 1;
|
|
}
|
|
}
|
|
|
|
static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
/*
|
|
* It's OK to look at env for the current mode here, because it's
|
|
* never possible for an AArch64 TB to chain to an AArch32 TB.
|
|
*/
|
|
if (is_a64(env)) {
|
|
env->pc = tb->pc;
|
|
} else {
|
|
env->regs[15] = tb->pc;
|
|
}
|
|
}
|
|
|
|
static bool arm_cpu_has_work(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
return (cpu->power_state != PSCI_OFF)
|
|
&& cs->interrupt_request &
|
|
(CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
|
|
| CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
|
|
| CPU_INTERRUPT_EXITTB);
|
|
}
|
|
|
|
static void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
|
|
void *opaque)
|
|
{
|
|
ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
|
|
|
|
entry->hook = hook;
|
|
entry->opaque = opaque;
|
|
|
|
QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
|
|
}
|
|
|
|
static void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
|
|
void *opaque)
|
|
{
|
|
ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
|
|
|
|
entry->hook = hook;
|
|
entry->opaque = opaque;
|
|
|
|
QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
|
|
}
|
|
|
|
static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
|
|
{
|
|
/* Reset a single ARMCPRegInfo register */
|
|
ARMCPRegInfo *ri = value;
|
|
ARMCPU *cpu = opaque;
|
|
|
|
if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
|
|
return;
|
|
}
|
|
|
|
if (ri->resetfn) {
|
|
ri->resetfn(&cpu->env, ri);
|
|
return;
|
|
}
|
|
|
|
/* A zero offset is never possible as it would be regs[0]
|
|
* so we use it to indicate that reset is being handled elsewhere.
|
|
* This is basically only used for fields in non-core coprocessors
|
|
* (like the pxa2xx ones).
|
|
*/
|
|
if (!ri->fieldoffset) {
|
|
return;
|
|
}
|
|
|
|
if (cpreg_field_is_64bit(ri)) {
|
|
CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
|
|
} else {
|
|
CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
|
|
}
|
|
}
|
|
|
|
static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
|
|
{
|
|
/* Purely an assertion check: we've already done reset once,
|
|
* so now check that running the reset for the cpreg doesn't
|
|
* change its value. This traps bugs where two different cpregs
|
|
* both try to reset the same state field but to different values.
|
|
*/
|
|
ARMCPRegInfo *ri = value;
|
|
#ifndef NDEBUG
|
|
ARMCPU *cpu = opaque;
|
|
uint64_t oldvalue, newvalue;
|
|
#endif
|
|
|
|
if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
|
|
return;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
oldvalue = read_raw_cp_reg(&cpu->env, ri);
|
|
#endif
|
|
cp_reg_reset(key, value, opaque);
|
|
#ifndef NDEBUG
|
|
newvalue = read_raw_cp_reg(&cpu->env, ri);
|
|
assert(oldvalue == newvalue);
|
|
#endif
|
|
}
|
|
|
|
static void arm_cpu_reset(CPUState *dev)
|
|
{
|
|
CPUState *s = CPU(dev);
|
|
ARMCPU *cpu = ARM_CPU(s);
|
|
ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
acc->parent_reset(dev);
|
|
|
|
memset(env, 0, offsetof(CPUARMState, end_reset_fields));
|
|
|
|
g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
|
|
g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
|
|
|
|
env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
|
|
env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
|
|
env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
|
|
env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
|
|
|
|
cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
|
|
s->halted = cpu->start_powered_off;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
|
|
env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
|
|
/* 64 bit CPUs always start in 64 bit mode */
|
|
env->aarch64 = 1;
|
|
/* Reset into the highest available EL */
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
env->pstate = PSTATE_MODE_EL3h;
|
|
} else if (arm_feature(env, ARM_FEATURE_EL2)) {
|
|
env->pstate = PSTATE_MODE_EL2h;
|
|
} else {
|
|
env->pstate = PSTATE_MODE_EL1h;
|
|
}
|
|
env->pc = cpu->rvbar;
|
|
}
|
|
|
|
/*
|
|
* If the highest available EL is EL2, AArch32 will start in Hyp
|
|
* mode; otherwise it starts in SVC. Note that if we start in
|
|
* AArch64 then these values in the uncached_cpsr will be ignored.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_EL2) &&
|
|
!arm_feature(env, ARM_FEATURE_EL3)) {
|
|
env->uncached_cpsr = ARM_CPU_MODE_HYP;
|
|
} else {
|
|
env->uncached_cpsr = ARM_CPU_MODE_SVC;
|
|
}
|
|
env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
uint32_t initial_msp; /* Loaded from 0x0 */
|
|
uint32_t initial_pc; /* Loaded from 0x4 */
|
|
// uint8_t *rom;
|
|
uint32_t vecbase;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
env->v7m.secure = true;
|
|
} else {
|
|
/* This bit resets to 0 if security is supported, but 1 if
|
|
* it is not. The bit is not present in v7M, but we set it
|
|
* here so we can avoid having to make checks on it conditional
|
|
* on ARM_FEATURE_V8 (we don't let the guest see the bit).
|
|
*/
|
|
env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
|
|
/*
|
|
* Set NSACR to indicate "NS access permitted to everything";
|
|
* this avoids having to have all the tests of it being
|
|
* conditional on ARM_FEATURE_M_SECURITY. Note also that from
|
|
* v8.1M the guest-visible value of NSACR in a CPU without the
|
|
* Security Extension is 0xcff.
|
|
*/
|
|
env->v7m.nsacr = 0xcff;
|
|
}
|
|
|
|
/* In v7M the reset value of this bit is IMPDEF, but ARM recommends
|
|
* that it resets to 1, so QEMU always does that rather than making
|
|
* it dependent on CPU model. In v8M it is RES1.
|
|
*/
|
|
env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
|
|
env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
/* in v8M the NONBASETHRDENA bit [0] is RES1 */
|
|
env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
|
|
env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
|
|
}
|
|
if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
|
|
env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
|
|
env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
|
|
}
|
|
|
|
if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
|
|
env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
|
|
env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
|
|
R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
|
|
}
|
|
/* Unlike A/R profile, M profile defines the reset LR value */
|
|
env->regs[14] = 0xffffffff;
|
|
|
|
env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
|
|
|
|
/* Load the initial SP and PC from offset 0 and 4 in the vector table */
|
|
vecbase = env->v7m.vecbase[env->v7m.secure];
|
|
#if 0
|
|
rom = rom_ptr(vecbase, 8);
|
|
if (rom) {
|
|
/* Address zero is covered by ROM which hasn't yet been
|
|
* copied into physical memory.
|
|
*/
|
|
initial_msp = ldl_p(rom);
|
|
initial_pc = ldl_p(rom + 4);
|
|
} else
|
|
#endif
|
|
{
|
|
/* Address zero not covered by a ROM blob, or the ROM blob
|
|
* is in non-modifiable memory and this is a second reset after
|
|
* it got copied into memory. In the latter case, rom_ptr
|
|
* will return a NULL pointer and we should use ldl_phys instead.
|
|
*/
|
|
#ifdef UNICORN_ARCH_POSTFIX
|
|
initial_msp = glue(ldl_phys, UNICORN_ARCH_POSTFIX)(s->uc, s->as, vecbase);
|
|
initial_pc = glue(ldl_phys, UNICORN_ARCH_POSTFIX)(s->uc, s->as, vecbase + 4);
|
|
#else
|
|
initial_msp = ldl_phys(s->uc, s->as, vecbase);
|
|
initial_pc = ldl_phys(s->uc, s->as, vecbase + 4);
|
|
#endif
|
|
}
|
|
|
|
env->regs[13] = initial_msp & 0xFFFFFFFC;
|
|
env->regs[15] = initial_pc & ~1;
|
|
env->thumb = initial_pc & 1;
|
|
}
|
|
|
|
/* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
|
|
* executing as AArch32 then check if highvecs are enabled and
|
|
* adjust the PC accordingly.
|
|
*/
|
|
if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
|
|
env->regs[15] = 0xFFFF0000;
|
|
}
|
|
|
|
/* M profile requires that reset clears the exclusive monitor;
|
|
* A profile does not, but clearing it makes more sense than having it
|
|
* set with an exclusive access on address zero.
|
|
*/
|
|
arm_clear_exclusive(env);
|
|
|
|
env->vfp.xregs[ARM_VFP_FPEXC] = 0;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_PMSA)) {
|
|
if (cpu->pmsav7_dregion > 0) {
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
memset(env->pmsav8.rbar[M_REG_NS], 0,
|
|
sizeof(*env->pmsav8.rbar[M_REG_NS])
|
|
* cpu->pmsav7_dregion);
|
|
memset(env->pmsav8.rlar[M_REG_NS], 0,
|
|
sizeof(*env->pmsav8.rlar[M_REG_NS])
|
|
* cpu->pmsav7_dregion);
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
memset(env->pmsav8.rbar[M_REG_S], 0,
|
|
sizeof(*env->pmsav8.rbar[M_REG_S])
|
|
* cpu->pmsav7_dregion);
|
|
memset(env->pmsav8.rlar[M_REG_S], 0,
|
|
sizeof(*env->pmsav8.rlar[M_REG_S])
|
|
* cpu->pmsav7_dregion);
|
|
}
|
|
} else if (arm_feature(env, ARM_FEATURE_V7)) {
|
|
memset(env->pmsav7.drbar, 0,
|
|
sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
|
|
memset(env->pmsav7.drsr, 0,
|
|
sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
|
|
memset(env->pmsav7.dracr, 0,
|
|
sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
|
|
}
|
|
}
|
|
env->pmsav7.rnr[M_REG_NS] = 0;
|
|
env->pmsav7.rnr[M_REG_S] = 0;
|
|
env->pmsav8.mair0[M_REG_NS] = 0;
|
|
env->pmsav8.mair0[M_REG_S] = 0;
|
|
env->pmsav8.mair1[M_REG_NS] = 0;
|
|
env->pmsav8.mair1[M_REG_S] = 0;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
if (cpu->sau_sregion > 0) {
|
|
memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
|
|
memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
|
|
}
|
|
env->sau.rnr = 0;
|
|
/* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
|
|
* the Cortex-M33 does.
|
|
*/
|
|
env->sau.ctrl = 0;
|
|
}
|
|
|
|
set_flush_to_zero(1, &env->vfp.standard_fp_status);
|
|
set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
|
|
set_default_nan_mode(1, &env->vfp.standard_fp_status);
|
|
set_float_detect_tininess(float_tininess_before_rounding,
|
|
&env->vfp.fp_status);
|
|
set_float_detect_tininess(float_tininess_before_rounding,
|
|
&env->vfp.standard_fp_status);
|
|
set_float_detect_tininess(float_tininess_before_rounding,
|
|
&env->vfp.fp_status_f16);
|
|
|
|
hw_breakpoint_update_all(cpu);
|
|
hw_watchpoint_update_all(cpu);
|
|
arm_rebuild_hflags(env);
|
|
}
|
|
|
|
static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
|
|
unsigned int target_el,
|
|
unsigned int cur_el, bool secure,
|
|
uint64_t hcr_el2)
|
|
{
|
|
CPUARMState *env = cs->env_ptr;
|
|
bool pstate_unmasked;
|
|
bool unmasked = false;
|
|
|
|
/*
|
|
* Don't take exceptions if they target a lower EL.
|
|
* This check should catch any exceptions that would not be taken
|
|
* but left pending.
|
|
*/
|
|
if (cur_el > target_el) {
|
|
return false;
|
|
}
|
|
|
|
switch (excp_idx) {
|
|
case EXCP_FIQ:
|
|
pstate_unmasked = !(env->daif & PSTATE_F);
|
|
break;
|
|
|
|
case EXCP_IRQ:
|
|
pstate_unmasked = !(env->daif & PSTATE_I);
|
|
break;
|
|
|
|
case EXCP_VFIQ:
|
|
if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
|
|
/* VFIQs are only taken when hypervized and non-secure. */
|
|
return false;
|
|
}
|
|
return !(env->daif & PSTATE_F);
|
|
case EXCP_VIRQ:
|
|
if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
|
|
/* VIRQs are only taken when hypervized and non-secure. */
|
|
return false;
|
|
}
|
|
return !(env->daif & PSTATE_I);
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/*
|
|
* Use the target EL, current execution state and SCR/HCR settings to
|
|
* determine whether the corresponding CPSR bit is used to mask the
|
|
* interrupt.
|
|
*/
|
|
if ((target_el > cur_el) && (target_el != 1)) {
|
|
/* Exceptions targeting a higher EL may not be maskable */
|
|
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
|
|
/*
|
|
* 64-bit masking rules are simple: exceptions to EL3
|
|
* can't be masked, and exceptions to EL2 can only be
|
|
* masked from Secure state. The HCR and SCR settings
|
|
* don't affect the masking logic, only the interrupt routing.
|
|
*/
|
|
if (target_el == 3 || !secure) {
|
|
unmasked = true;
|
|
}
|
|
} else {
|
|
/*
|
|
* The old 32-bit-only environment has a more complicated
|
|
* masking setup. HCR and SCR bits not only affect interrupt
|
|
* routing but also change the behaviour of masking.
|
|
*/
|
|
bool hcr, scr;
|
|
|
|
switch (excp_idx) {
|
|
case EXCP_FIQ:
|
|
/*
|
|
* If FIQs are routed to EL3 or EL2 then there are cases where
|
|
* we override the CPSR.F in determining if the exception is
|
|
* masked or not. If neither of these are set then we fall back
|
|
* to the CPSR.F setting otherwise we further assess the state
|
|
* below.
|
|
*/
|
|
hcr = hcr_el2 & HCR_FMO;
|
|
scr = (env->cp15.scr_el3 & SCR_FIQ);
|
|
|
|
/*
|
|
* When EL3 is 32-bit, the SCR.FW bit controls whether the
|
|
* CPSR.F bit masks FIQ interrupts when taken in non-secure
|
|
* state. If SCR.FW is set then FIQs can be masked by CPSR.F
|
|
* when non-secure but only when FIQs are only routed to EL3.
|
|
*/
|
|
scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
|
|
break;
|
|
case EXCP_IRQ:
|
|
/*
|
|
* When EL3 execution state is 32-bit, if HCR.IMO is set then
|
|
* we may override the CPSR.I masking when in non-secure state.
|
|
* The SCR.IRQ setting has already been taken into consideration
|
|
* when setting the target EL, so it does not have a further
|
|
* affect here.
|
|
*/
|
|
hcr = hcr_el2 & HCR_IMO;
|
|
scr = false;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if ((scr || hcr) && !secure) {
|
|
unmasked = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The PSTATE bits only mask the interrupt if we have not overriden the
|
|
* ability above.
|
|
*/
|
|
return unmasked || pstate_unmasked;
|
|
}
|
|
|
|
bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
|
|
{
|
|
CPUClass *cc = CPU_GET_CLASS(cs);
|
|
CPUARMState *env = cs->env_ptr;
|
|
uint32_t cur_el = arm_current_el(env);
|
|
bool secure = arm_is_secure(env);
|
|
uint64_t hcr_el2 = arm_hcr_el2_eff(env);
|
|
uint32_t target_el;
|
|
uint32_t excp_idx;
|
|
|
|
/* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
|
|
|
|
if (interrupt_request & CPU_INTERRUPT_FIQ) {
|
|
excp_idx = EXCP_FIQ;
|
|
target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
|
|
if (arm_excp_unmasked(cs, excp_idx, target_el,
|
|
cur_el, secure, hcr_el2)) {
|
|
goto found;
|
|
}
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
excp_idx = EXCP_IRQ;
|
|
target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
|
|
if (arm_excp_unmasked(cs, excp_idx, target_el,
|
|
cur_el, secure, hcr_el2)) {
|
|
goto found;
|
|
}
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_VIRQ) {
|
|
excp_idx = EXCP_VIRQ;
|
|
target_el = 1;
|
|
if (arm_excp_unmasked(cs, excp_idx, target_el,
|
|
cur_el, secure, hcr_el2)) {
|
|
goto found;
|
|
}
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_VFIQ) {
|
|
excp_idx = EXCP_VFIQ;
|
|
target_el = 1;
|
|
if (arm_excp_unmasked(cs, excp_idx, target_el,
|
|
cur_el, secure, hcr_el2)) {
|
|
goto found;
|
|
}
|
|
}
|
|
return false;
|
|
|
|
found:
|
|
cs->exception_index = excp_idx;
|
|
env->exception.target_el = target_el;
|
|
cc->do_interrupt(cs);
|
|
return true;
|
|
}
|
|
|
|
#if !defined(TARGET_AARCH64)
|
|
static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
|
|
{
|
|
CPUClass *cc = CPU_GET_CLASS(cs);
|
|
// ARMCPU *cpu = ARM_CPU(cs);
|
|
// CPUARMState *env = &cpu->env;
|
|
bool ret = false;
|
|
|
|
/* ARMv7-M interrupt masking works differently than -A or -R.
|
|
* There is no FIQ/IRQ distinction. Instead of I and F bits
|
|
* masking FIQ and IRQ interrupts, an exception is taken only
|
|
* if it is higher priority than the current execution priority
|
|
* (which depends on state like BASEPRI, FAULTMASK and the
|
|
* currently active exception).
|
|
*/
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
// && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
|
|
cs->exception_index = EXCP_IRQ;
|
|
cc->do_interrupt(cs);
|
|
ret = true;
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
void arm_cpu_update_virq(ARMCPU *cpu)
|
|
{
|
|
/*
|
|
* Update the interrupt level for VIRQ, which is the logical OR of
|
|
* the HCR_EL2.VI bit and the input line level from the GIC.
|
|
*/
|
|
CPUARMState *env = &cpu->env;
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
|
|
(env->irq_line_state & CPU_INTERRUPT_VIRQ);
|
|
|
|
if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
|
|
if (new_state) {
|
|
cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
|
|
} else {
|
|
cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
|
|
}
|
|
}
|
|
}
|
|
|
|
void arm_cpu_update_vfiq(ARMCPU *cpu)
|
|
{
|
|
/*
|
|
* Update the interrupt level for VFIQ, which is the logical OR of
|
|
* the HCR_EL2.VF bit and the input line level from the GIC.
|
|
*/
|
|
CPUARMState *env = &cpu->env;
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
|
|
(env->irq_line_state & CPU_INTERRUPT_VFIQ);
|
|
|
|
if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
|
|
if (new_state) {
|
|
cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
|
|
} else {
|
|
cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void set_feature(CPUARMState *env, int feature)
|
|
{
|
|
env->features |= 1ULL << feature;
|
|
}
|
|
|
|
static inline void unset_feature(CPUARMState *env, int feature)
|
|
{
|
|
env->features &= ~(1ULL << feature);
|
|
}
|
|
|
|
static uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
|
|
{
|
|
uint32_t Aff1 = idx / clustersz;
|
|
uint32_t Aff0 = idx % clustersz;
|
|
return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
|
|
}
|
|
|
|
static void cpreg_hashtable_data_destroy(gpointer data)
|
|
{
|
|
/*
|
|
* Destroy function for cpu->cp_regs hashtable data entries.
|
|
* We must free the name string because it was g_strdup()ed in
|
|
* add_cpreg_to_hashtable(). It's OK to cast away the 'const'
|
|
* from r->name because we know we definitely allocated it.
|
|
*/
|
|
ARMCPRegInfo *r = data;
|
|
|
|
g_free((void *)r->name);
|
|
g_free(r);
|
|
}
|
|
|
|
void arm_cpu_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
env->uc = uc;
|
|
cpu_set_cpustate_pointers(cpu);
|
|
cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
|
|
g_free, cpreg_hashtable_data_destroy);
|
|
|
|
QLIST_INIT(&cpu->pre_el_change_hooks);
|
|
QLIST_INIT(&cpu->el_change_hooks);
|
|
|
|
/* DTB consumers generally don't in fact care what the 'compatible'
|
|
* string is, so always provide some string and trust that a hypothetical
|
|
* picky DTB consumer will also provide a helpful error message.
|
|
*/
|
|
cpu->psci_version = 1; /* By default assume PSCI v0.1 */
|
|
|
|
cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
|
|
}
|
|
|
|
unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
|
|
{
|
|
/*
|
|
* The exact approach to calculating guest ticks is:
|
|
*
|
|
* muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
|
|
* NANOSECONDS_PER_SECOND);
|
|
*
|
|
* We don't do that. Rather we intentionally use integer division
|
|
* truncation below and in the caller for the conversion of host monotonic
|
|
* time to guest ticks to provide the exact inverse for the semantics of
|
|
* the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
|
|
* it loses precision when representing frequencies where
|
|
* `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
|
|
* provide an exact inverse leads to scheduling timers with negative
|
|
* periods, which in turn leads to sticky behaviour in the guest.
|
|
*
|
|
* Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
|
|
* cannot become zero.
|
|
*/
|
|
return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
|
|
NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
|
|
}
|
|
|
|
void arm_cpu_post_init(CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
/* M profile implies PMSA. We have to do this here rather than
|
|
* in realize with the other feature-implication checks because
|
|
* we look at the PMSA bit to see if we should add some properties.
|
|
*/
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
|
|
set_feature(&cpu->env, ARM_FEATURE_PMSA);
|
|
}
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
|
|
arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
|
|
cpu->reset_cbar = 0;
|
|
}
|
|
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
|
|
cpu->reset_hivecs = false;
|
|
}
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
cpu->rvbar = 0;
|
|
}
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
|
|
/* Add the has_el3 state CPU property only if EL3 is allowed. This will
|
|
* prevent "has_el3" from existing on CPUs which cannot support EL3.
|
|
*/
|
|
cpu->has_el3 = true;
|
|
}
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
|
|
cpu->has_el2 = true;
|
|
}
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
|
|
cpu->has_pmu = true;
|
|
}
|
|
|
|
/*
|
|
* Allow user to turn off VFP and Neon support, but only for TCG --
|
|
* KVM does not currently allow us to lie to the guest about its
|
|
* ID/feature registers, so the guest always sees what the host has.
|
|
*/
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
|
|
? cpu_isar_feature(aa64_fp_simd, cpu)
|
|
: cpu_isar_feature(aa32_vfp, cpu)) {
|
|
cpu->has_vfp = true;
|
|
}
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
|
|
cpu->has_neon = true;
|
|
}
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
|
|
arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
|
|
cpu->has_dsp = true;
|
|
}
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
|
|
cpu->has_mpu = true;
|
|
}
|
|
|
|
cpu->cfgend = false;
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
|
|
cpu->gt_cntfrq_hz = NANOSECONDS_PER_SECOND / GTIMER_SCALE;
|
|
}
|
|
}
|
|
|
|
static void arm_cpu_finalize_features(ARMCPU *cpu)
|
|
{
|
|
#if 0
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
arm_cpu_sve_finalize(cpu);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void arm_cpu_realizefn(struct uc_struct *uc, CPUState *dev)
|
|
{
|
|
CPUState *cs = CPU(dev);
|
|
ARMCPU *cpu = ARM_CPU(dev);
|
|
CPUARMState *env = &cpu->env;
|
|
#ifndef NDEBUG
|
|
bool no_aa32 = false;
|
|
#endif
|
|
|
|
#if 0
|
|
/* The NVIC and M-profile CPU are two halves of a single piece of
|
|
* hardware; trying to use one without the other is a command line
|
|
* error and will result in segfaults if not caught here.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
if (!env->nvic) {
|
|
return;
|
|
}
|
|
} else {
|
|
if (env->nvic) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
|
|
if (!cpu->gt_cntfrq_hz) {
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
cpu_exec_realizefn(cs);
|
|
|
|
arm_cpu_finalize_features(cpu);
|
|
|
|
if (arm_feature(env, ARM_FEATURE_AARCH64) &&
|
|
cpu->has_vfp != cpu->has_neon) {
|
|
/*
|
|
* This is an architectural requirement for AArch64; AArch32 is
|
|
* more flexible and permits VFP-no-Neon and Neon-no-VFP.
|
|
*/
|
|
// error_setg(errp, "AArch64 CPUs must have both VFP and Neon or neither");
|
|
return;
|
|
}
|
|
|
|
if (!cpu->has_vfp) {
|
|
uint64_t t;
|
|
uint32_t u;
|
|
|
|
t = cpu->isar.id_aa64isar1;
|
|
FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0, t);
|
|
cpu->isar.id_aa64isar1 = t;
|
|
|
|
t = cpu->isar.id_aa64pfr0;
|
|
FIELD_DP64(t, ID_AA64PFR0, FP, 0xf, t);
|
|
cpu->isar.id_aa64pfr0 = t;
|
|
|
|
u = cpu->isar.id_isar6;
|
|
FIELD_DP32(u, ID_ISAR6, JSCVT, 0, u);
|
|
cpu->isar.id_isar6 = u;
|
|
|
|
u = cpu->isar.mvfr0;
|
|
FIELD_DP32(u, MVFR0, FPSP, 0, u);
|
|
FIELD_DP32(u, MVFR0, FPDP, 0, u);
|
|
FIELD_DP32(u, MVFR0, FPTRAP, 0, u);
|
|
FIELD_DP32(u, MVFR0, FPDIVIDE, 0, u);
|
|
FIELD_DP32(u, MVFR0, FPSQRT, 0, u);
|
|
FIELD_DP32(u, MVFR0, FPSHVEC, 0, u);
|
|
FIELD_DP32(u, MVFR0, FPROUND, 0, u);
|
|
cpu->isar.mvfr0 = u;
|
|
|
|
u = cpu->isar.mvfr1;
|
|
FIELD_DP32(u, MVFR1, FPFTZ, 0, u);
|
|
FIELD_DP32(u, MVFR1, FPDNAN, 0, u);
|
|
FIELD_DP32(u, MVFR1, FPHP, 0, u);
|
|
cpu->isar.mvfr1 = u;
|
|
|
|
u = cpu->isar.mvfr2;
|
|
FIELD_DP32(u, MVFR2, FPMISC, 0, u);
|
|
cpu->isar.mvfr2 = u;
|
|
}
|
|
|
|
if (!cpu->has_neon) {
|
|
uint64_t t;
|
|
uint32_t u;
|
|
|
|
unset_feature(env, ARM_FEATURE_NEON);
|
|
|
|
t = cpu->isar.id_aa64isar0;
|
|
FIELD_DP64(t, ID_AA64ISAR0, DP, 0, t);
|
|
cpu->isar.id_aa64isar0 = t;
|
|
|
|
t = cpu->isar.id_aa64isar1;
|
|
FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0, t);
|
|
cpu->isar.id_aa64isar1 = t;
|
|
|
|
t = cpu->isar.id_aa64pfr0;
|
|
FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf, t);
|
|
cpu->isar.id_aa64pfr0 = t;
|
|
|
|
u = cpu->isar.id_isar5;
|
|
FIELD_DP32(u, ID_ISAR5, RDM, 0, u);
|
|
FIELD_DP32(u, ID_ISAR5, VCMA, 0, u);
|
|
cpu->isar.id_isar5 = u;
|
|
|
|
u = cpu->isar.id_isar6;
|
|
FIELD_DP32(u, ID_ISAR6, DP, 0, u);
|
|
FIELD_DP32(u, ID_ISAR6, FHM, 0, u);
|
|
cpu->isar.id_isar6 = u;
|
|
|
|
u = cpu->isar.mvfr1;
|
|
FIELD_DP32(u, MVFR1, SIMDLS, 0, u);
|
|
FIELD_DP32(u, MVFR1, SIMDINT, 0, u);
|
|
FIELD_DP32(u, MVFR1, SIMDSP, 0, u);
|
|
FIELD_DP32(u, MVFR1, SIMDHP, 0, u);
|
|
cpu->isar.mvfr1 = u;
|
|
|
|
u = cpu->isar.mvfr2;
|
|
FIELD_DP32(u, MVFR2, SIMDMISC, 0, u);
|
|
cpu->isar.mvfr2 = u;
|
|
}
|
|
|
|
if (!cpu->has_neon && !cpu->has_vfp) {
|
|
uint64_t t;
|
|
uint32_t u;
|
|
|
|
t = cpu->isar.id_aa64isar0;
|
|
FIELD_DP64(t, ID_AA64ISAR0, FHM, 0, t);
|
|
cpu->isar.id_aa64isar0 = t;
|
|
|
|
t = cpu->isar.id_aa64isar1;
|
|
FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0, t);
|
|
cpu->isar.id_aa64isar1 = t;
|
|
|
|
u = cpu->isar.mvfr0;
|
|
FIELD_DP32(u, MVFR0, SIMDREG, 0, u);
|
|
cpu->isar.mvfr0 = u;
|
|
|
|
/* Despite the name, this field covers both VFP and Neon */
|
|
u = cpu->isar.mvfr1;
|
|
FIELD_DP32(u, MVFR1, SIMDFMAC, 0, u);
|
|
cpu->isar.mvfr1 = u;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
|
|
uint32_t u;
|
|
|
|
unset_feature(env, ARM_FEATURE_THUMB_DSP);
|
|
|
|
u = cpu->isar.id_isar1;
|
|
FIELD_DP32(u, ID_ISAR1, EXTEND, 1, u);
|
|
cpu->isar.id_isar1 = u;
|
|
|
|
u = cpu->isar.id_isar2;
|
|
FIELD_DP32(u, ID_ISAR2, MULTU, 1, u);
|
|
FIELD_DP32(u, ID_ISAR2, MULTS, 1, u);
|
|
cpu->isar.id_isar2 = u;
|
|
|
|
u = cpu->isar.id_isar3;
|
|
FIELD_DP32(u, ID_ISAR3, SIMD, 1, u);
|
|
FIELD_DP32(u, ID_ISAR3, SATURATE, 0, u);
|
|
cpu->isar.id_isar3 = u;
|
|
}
|
|
|
|
/* Some features automatically imply others: */
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
set_feature(env, ARM_FEATURE_V7);
|
|
} else {
|
|
set_feature(env, ARM_FEATURE_V7VE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* There exist AArch64 cpus without AArch32 support. When KVM
|
|
* queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
|
|
* Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
|
|
* As a general principle, we also do not make ID register
|
|
* consistency checks anywhere unless using TCG, because only
|
|
* for TCG would a consistency-check failure be a QEMU bug.
|
|
*/
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
#ifndef NDEBUG
|
|
no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
|
|
#else
|
|
cpu_isar_feature(aa64_aa32, cpu);
|
|
#endif
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_V7VE)) {
|
|
/* v7 Virtualization Extensions. In real hardware this implies
|
|
* EL2 and also the presence of the Security Extensions.
|
|
* For QEMU, for backwards-compatibility we implement some
|
|
* CPUs or CPU configs which have no actual EL2 or EL3 but do
|
|
* include the various other features that V7VE implies.
|
|
* Presence of EL2 itself is ARM_FEATURE_EL2, and of the
|
|
* Security Extensions is ARM_FEATURE_EL3.
|
|
*/
|
|
#ifndef NDEBUG
|
|
assert(no_aa32 || cpu_isar_feature(aa32_arm_div, cpu));
|
|
#endif
|
|
set_feature(env, ARM_FEATURE_LPAE);
|
|
set_feature(env, ARM_FEATURE_V7);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V7)) {
|
|
set_feature(env, ARM_FEATURE_VAPA);
|
|
set_feature(env, ARM_FEATURE_THUMB2);
|
|
set_feature(env, ARM_FEATURE_MPIDR);
|
|
if (!arm_feature(env, ARM_FEATURE_M)) {
|
|
set_feature(env, ARM_FEATURE_V6K);
|
|
} else {
|
|
set_feature(env, ARM_FEATURE_V6);
|
|
}
|
|
|
|
/* Always define VBAR for V7 CPUs even if it doesn't exist in
|
|
* non-EL3 configs. This is needed by some legacy boards.
|
|
*/
|
|
set_feature(env, ARM_FEATURE_VBAR);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V6K)) {
|
|
set_feature(env, ARM_FEATURE_V6);
|
|
set_feature(env, ARM_FEATURE_MVFR);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V6)) {
|
|
set_feature(env, ARM_FEATURE_V5);
|
|
if (!arm_feature(env, ARM_FEATURE_M)) {
|
|
#ifndef NDEBUG
|
|
assert(no_aa32 || cpu_isar_feature(aa32_jazelle, cpu));
|
|
#endif
|
|
set_feature(env, ARM_FEATURE_AUXCR);
|
|
}
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V5)) {
|
|
set_feature(env, ARM_FEATURE_V4T);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_LPAE)) {
|
|
set_feature(env, ARM_FEATURE_V7MP);
|
|
set_feature(env, ARM_FEATURE_PXN);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
|
|
set_feature(env, ARM_FEATURE_CBAR);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_THUMB2) &&
|
|
!arm_feature(env, ARM_FEATURE_M)) {
|
|
set_feature(env, ARM_FEATURE_THUMB_DSP);
|
|
}
|
|
|
|
/*
|
|
* We rely on no XScale CPU having VFP so we can use the same bits in the
|
|
* TB flags field for VECSTRIDE and XSCALE_CPAR.
|
|
*/
|
|
assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
|
|
!cpu_isar_feature(aa32_vfp_simd, cpu) ||
|
|
!arm_feature(env, ARM_FEATURE_XSCALE));
|
|
|
|
#if 0
|
|
if (arm_feature(env, ARM_FEATURE_V7) &&
|
|
!arm_feature(env, ARM_FEATURE_M) &&
|
|
!arm_feature(env, ARM_FEATURE_PMSA)) {
|
|
/* v7VMSA drops support for the old ARMv5 tiny pages, so we
|
|
* can use 4K pages.
|
|
*/
|
|
pagebits = 12;
|
|
} else {
|
|
/* For CPUs which might have tiny 1K pages, or which have an
|
|
* MPU and might have small region sizes, stick with 1K pages.
|
|
*/
|
|
pagebits = 10;
|
|
}
|
|
|
|
if (!set_preferred_target_page_bits(cpu->uc, pagebits)) {
|
|
/* This can only ever happen for hotplugging a CPU, or if
|
|
* the board code incorrectly creates a CPU which it has
|
|
* promised via minimum_page_size that it will not.
|
|
*/
|
|
// error_setg(errp, "This CPU requires a smaller page size than the "
|
|
// "system is using");
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
|
|
* We don't support setting cluster ID ([16..23]) (known as Aff2
|
|
* in later ARM ARM versions), or any of the higher affinity level fields,
|
|
* so these bits always RAZ.
|
|
*/
|
|
if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
|
|
cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
|
|
ARM_DEFAULT_CPUS_PER_CLUSTER);
|
|
}
|
|
|
|
if (cpu->reset_hivecs) {
|
|
cpu->reset_sctlr |= (1 << 13);
|
|
}
|
|
|
|
if (cpu->cfgend) {
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
|
|
cpu->reset_sctlr |= SCTLR_EE;
|
|
} else {
|
|
cpu->reset_sctlr |= SCTLR_B;
|
|
}
|
|
}
|
|
|
|
if (!cpu->has_el3) {
|
|
/* If the has_el3 CPU property is disabled then we need to disable the
|
|
* feature.
|
|
*/
|
|
unset_feature(env, ARM_FEATURE_EL3);
|
|
|
|
/* Disable the security extension feature bits in the processor feature
|
|
* registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
|
|
*/
|
|
cpu->id_pfr1 &= ~0xf0;
|
|
cpu->isar.id_aa64pfr0 &= ~0xf000;
|
|
}
|
|
|
|
if (!cpu->has_el2) {
|
|
unset_feature(env, ARM_FEATURE_EL2);
|
|
}
|
|
|
|
if (!cpu->has_pmu) {
|
|
unset_feature(env, ARM_FEATURE_PMU);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_PMU)) {
|
|
pmu_init(cpu);
|
|
|
|
arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
|
|
arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
|
|
} else {
|
|
FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0, cpu->isar.id_aa64dfr0);
|
|
FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0, cpu->isar.id_dfr0);
|
|
cpu->pmceid0 = 0;
|
|
cpu->pmceid1 = 0;
|
|
}
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_EL2)) {
|
|
/* Disable the hypervisor feature bits in the processor feature
|
|
* registers if we don't have EL2. These are id_pfr1[15:12] and
|
|
* id_aa64pfr0_el1[11:8].
|
|
*/
|
|
cpu->isar.id_aa64pfr0 &= ~0xf00;
|
|
cpu->id_pfr1 &= ~0xf000;
|
|
}
|
|
|
|
/* MPU can be configured out of a PMSA CPU either by setting has-mpu
|
|
* to false or by setting pmsav7-dregion to 0.
|
|
*/
|
|
if (!cpu->has_mpu) {
|
|
cpu->pmsav7_dregion = 0;
|
|
}
|
|
if (cpu->pmsav7_dregion == 0) {
|
|
cpu->has_mpu = false;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_PMSA) &&
|
|
arm_feature(env, ARM_FEATURE_V7)) {
|
|
uint32_t nr = cpu->pmsav7_dregion;
|
|
|
|
if (nr > 0xff) {
|
|
// error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
|
|
return;
|
|
}
|
|
|
|
if (nr) {
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
/* PMSAv8 */
|
|
env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
|
|
env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
|
|
env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
|
|
}
|
|
} else {
|
|
env->pmsav7.drbar = g_new0(uint32_t, nr);
|
|
env->pmsav7.drsr = g_new0(uint32_t, nr);
|
|
env->pmsav7.dracr = g_new0(uint32_t, nr);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
uint32_t nr = cpu->sau_sregion;
|
|
|
|
if (nr > 0xff) {
|
|
// error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
|
|
return;
|
|
}
|
|
|
|
if (nr) {
|
|
env->sau.rbar = g_new0(uint32_t, nr);
|
|
env->sau.rlar = g_new0(uint32_t, nr);
|
|
}
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
set_feature(env, ARM_FEATURE_VBAR);
|
|
}
|
|
|
|
register_cp_regs_for_features(cpu);
|
|
|
|
unsigned int smp_cpus = 1;
|
|
|
|
if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
|
|
cs->num_ases = 2;
|
|
|
|
if (!cpu->secure_memory) {
|
|
cpu->secure_memory = cs->memory;
|
|
}
|
|
cpu_address_space_init(cs, ARMASIdx_S, cpu->secure_memory);
|
|
} else {
|
|
cs->num_ases = 1;
|
|
}
|
|
cpu_address_space_init(cs, ARMASIdx_NS, cs->memory);
|
|
|
|
/* No core_count specified, default to smp_cpus. */
|
|
if (cpu->core_count == -1) {
|
|
cpu->core_count = smp_cpus;
|
|
}
|
|
|
|
cpu_reset(cs);
|
|
}
|
|
|
|
/* CPU models. These are not needed for the AArch64 linux-user build. */
|
|
#if !defined(TARGET_AARCH64)
|
|
|
|
static void arm926_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V5);
|
|
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
|
|
set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
|
|
cpu->midr = 0x41069265;
|
|
cpu->reset_fpsid = 0x41011090;
|
|
cpu->ctr = 0x1dd20d2;
|
|
cpu->reset_sctlr = 0x00090078;
|
|
|
|
/*
|
|
* ARMv5 does not have the ID_ISAR registers, but we can still
|
|
* set the field to indicate Jazelle support within QEMU.
|
|
*/
|
|
FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1, cpu->isar.id_isar1);
|
|
/*
|
|
* Similarly, we need to set MVFR0 fields to enable vfp and short vector
|
|
* support even though ARMv5 doesn't have this register.
|
|
*/
|
|
FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1, cpu->isar.mvfr0);
|
|
FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSP, 1, cpu->isar.mvfr0);
|
|
FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1, cpu->isar.mvfr0);
|
|
}
|
|
|
|
static void arm946_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V5);
|
|
set_feature(&cpu->env, ARM_FEATURE_PMSA);
|
|
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
|
|
cpu->midr = 0x41059461;
|
|
cpu->ctr = 0x0f004006;
|
|
cpu->reset_sctlr = 0x00000078;
|
|
}
|
|
|
|
static void arm1026_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V5);
|
|
set_feature(&cpu->env, ARM_FEATURE_AUXCR);
|
|
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
|
|
set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
|
|
cpu->midr = 0x4106a262;
|
|
cpu->reset_fpsid = 0x410110a0;
|
|
cpu->ctr = 0x1dd20d2;
|
|
cpu->reset_sctlr = 0x00090078;
|
|
cpu->reset_auxcr = 1;
|
|
|
|
/*
|
|
* ARMv5 does not have the ID_ISAR registers, but we can still
|
|
* set the field to indicate Jazelle support within QEMU.
|
|
*/
|
|
FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1, cpu->isar.id_isar1);
|
|
/*
|
|
* Similarly, we need to set MVFR0 fields to enable vfp and short vector
|
|
* support even though ARMv5 doesn't have this register.
|
|
*/
|
|
FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1, cpu->isar.mvfr0);
|
|
FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSP, 1, cpu->isar.mvfr0);
|
|
FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1, cpu->isar.mvfr0);
|
|
|
|
{
|
|
/* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
|
|
ARMCPRegInfo ifar = {
|
|
.name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
|
|
.resetvalue = 0
|
|
};
|
|
define_one_arm_cp_reg(cpu, &ifar);
|
|
}
|
|
}
|
|
|
|
static void arm1136_r2_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
/* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
|
|
* older core than plain "arm1136". In particular this does not
|
|
* have the v6K features.
|
|
* These ID register values are correct for 1136 but may be wrong
|
|
* for 1136_r2 (in particular r0p2 does not actually implement most
|
|
* of the ID registers).
|
|
*/
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V6);
|
|
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
|
|
set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
|
|
set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
|
|
cpu->midr = 0x4107b362;
|
|
cpu->reset_fpsid = 0x410120b4;
|
|
cpu->isar.mvfr0 = 0x11111111;
|
|
cpu->isar.mvfr1 = 0x00000000;
|
|
cpu->ctr = 0x1dd20d2;
|
|
cpu->reset_sctlr = 0x00050078;
|
|
cpu->id_pfr0 = 0x111;
|
|
cpu->id_pfr1 = 0x1;
|
|
cpu->isar.id_dfr0 = 0x2;
|
|
cpu->id_afr0 = 0x3;
|
|
cpu->isar.id_mmfr0 = 0x01130003;
|
|
cpu->isar.id_mmfr1 = 0x10030302;
|
|
cpu->isar.id_mmfr2 = 0x01222110;
|
|
cpu->isar.id_isar0 = 0x00140011;
|
|
cpu->isar.id_isar1 = 0x12002111;
|
|
cpu->isar.id_isar2 = 0x11231111;
|
|
cpu->isar.id_isar3 = 0x01102131;
|
|
cpu->isar.id_isar4 = 0x141;
|
|
cpu->reset_auxcr = 7;
|
|
}
|
|
|
|
static void arm1136_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V6K);
|
|
set_feature(&cpu->env, ARM_FEATURE_V6);
|
|
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
|
|
set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
|
|
set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
|
|
cpu->midr = 0x4117b363;
|
|
cpu->reset_fpsid = 0x410120b4;
|
|
cpu->isar.mvfr0 = 0x11111111;
|
|
cpu->isar.mvfr1 = 0x00000000;
|
|
cpu->ctr = 0x1dd20d2;
|
|
cpu->reset_sctlr = 0x00050078;
|
|
cpu->id_pfr0 = 0x111;
|
|
cpu->id_pfr1 = 0x1;
|
|
cpu->isar.id_dfr0 = 0x2;
|
|
cpu->id_afr0 = 0x3;
|
|
cpu->isar.id_mmfr0 = 0x01130003;
|
|
cpu->isar.id_mmfr1 = 0x10030302;
|
|
cpu->isar.id_mmfr2 = 0x01222110;
|
|
cpu->isar.id_isar0 = 0x00140011;
|
|
cpu->isar.id_isar1 = 0x12002111;
|
|
cpu->isar.id_isar2 = 0x11231111;
|
|
cpu->isar.id_isar3 = 0x01102131;
|
|
cpu->isar.id_isar4 = 0x141;
|
|
cpu->reset_auxcr = 7;
|
|
}
|
|
|
|
static void arm1176_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V6K);
|
|
set_feature(&cpu->env, ARM_FEATURE_VAPA);
|
|
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
|
|
set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
|
|
set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
|
|
set_feature(&cpu->env, ARM_FEATURE_EL3);
|
|
cpu->midr = 0x410fb767;
|
|
cpu->reset_fpsid = 0x410120b5;
|
|
cpu->isar.mvfr0 = 0x11111111;
|
|
cpu->isar.mvfr1 = 0x00000000;
|
|
cpu->ctr = 0x1dd20d2;
|
|
cpu->reset_sctlr = 0x00050078;
|
|
cpu->id_pfr0 = 0x111;
|
|
cpu->id_pfr1 = 0x11;
|
|
cpu->isar.id_dfr0 = 0x33;
|
|
cpu->id_afr0 = 0;
|
|
cpu->isar.id_mmfr0 = 0x01130003;
|
|
cpu->isar.id_mmfr1 = 0x10030302;
|
|
cpu->isar.id_mmfr2 = 0x01222100;
|
|
cpu->isar.id_isar0 = 0x0140011;
|
|
cpu->isar.id_isar1 = 0x12002111;
|
|
cpu->isar.id_isar2 = 0x11231121;
|
|
cpu->isar.id_isar3 = 0x01102131;
|
|
cpu->isar.id_isar4 = 0x01141;
|
|
cpu->reset_auxcr = 7;
|
|
}
|
|
|
|
static void arm11mpcore_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V6K);
|
|
set_feature(&cpu->env, ARM_FEATURE_VAPA);
|
|
set_feature(&cpu->env, ARM_FEATURE_MPIDR);
|
|
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
|
|
cpu->midr = 0x410fb022;
|
|
cpu->reset_fpsid = 0x410120b4;
|
|
cpu->isar.mvfr0 = 0x11111111;
|
|
cpu->isar.mvfr1 = 0x00000000;
|
|
cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
|
|
cpu->id_pfr0 = 0x111;
|
|
cpu->id_pfr1 = 0x1;
|
|
cpu->isar.id_dfr0 = 0;
|
|
cpu->id_afr0 = 0x2;
|
|
cpu->isar.id_mmfr0 = 0x01100103;
|
|
cpu->isar.id_mmfr1 = 0x10020302;
|
|
cpu->isar.id_mmfr2 = 0x01222000;
|
|
cpu->isar.id_isar0 = 0x00100011;
|
|
cpu->isar.id_isar1 = 0x12002111;
|
|
cpu->isar.id_isar2 = 0x11221011;
|
|
cpu->isar.id_isar3 = 0x01102131;
|
|
cpu->isar.id_isar4 = 0x141;
|
|
cpu->reset_auxcr = 1;
|
|
}
|
|
|
|
static void cortex_m0_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
set_feature(&cpu->env, ARM_FEATURE_V6);
|
|
set_feature(&cpu->env, ARM_FEATURE_M);
|
|
|
|
cpu->midr = 0x410cc200;
|
|
}
|
|
|
|
static void cortex_m3_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
set_feature(&cpu->env, ARM_FEATURE_V7);
|
|
set_feature(&cpu->env, ARM_FEATURE_M);
|
|
set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
|
|
cpu->midr = 0x410fc231;
|
|
cpu->pmsav7_dregion = 8;
|
|
cpu->id_pfr0 = 0x00000030;
|
|
cpu->id_pfr1 = 0x00000200;
|
|
cpu->isar.id_dfr0 = 0x00100000;
|
|
cpu->id_afr0 = 0x00000000;
|
|
cpu->isar.id_mmfr0 = 0x00000030;
|
|
cpu->isar.id_mmfr1 = 0x00000000;
|
|
cpu->isar.id_mmfr2 = 0x00000000;
|
|
cpu->isar.id_mmfr3 = 0x00000000;
|
|
cpu->isar.id_isar0 = 0x01141110;
|
|
cpu->isar.id_isar1 = 0x02111000;
|
|
cpu->isar.id_isar2 = 0x21112231;
|
|
cpu->isar.id_isar3 = 0x01111110;
|
|
cpu->isar.id_isar4 = 0x01310102;
|
|
cpu->isar.id_isar5 = 0x00000000;
|
|
cpu->isar.id_isar6 = 0x00000000;
|
|
}
|
|
|
|
static void cortex_m4_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V7);
|
|
set_feature(&cpu->env, ARM_FEATURE_M);
|
|
set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
|
|
set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
|
|
cpu->midr = 0x410fc240; /* r0p0 */
|
|
cpu->pmsav7_dregion = 8;
|
|
cpu->isar.mvfr0 = 0x10110021;
|
|
cpu->isar.mvfr1 = 0x11000011;
|
|
cpu->isar.mvfr2 = 0x00000000;
|
|
cpu->id_pfr0 = 0x00000030;
|
|
cpu->id_pfr1 = 0x00000200;
|
|
cpu->isar.id_dfr0 = 0x00100000;
|
|
cpu->id_afr0 = 0x00000000;
|
|
cpu->isar.id_mmfr0 = 0x00000030;
|
|
cpu->isar.id_mmfr1 = 0x00000000;
|
|
cpu->isar.id_mmfr2 = 0x00000000;
|
|
cpu->isar.id_mmfr3 = 0x00000000;
|
|
cpu->isar.id_isar0 = 0x01141110;
|
|
cpu->isar.id_isar1 = 0x02111000;
|
|
cpu->isar.id_isar2 = 0x21112231;
|
|
cpu->isar.id_isar3 = 0x01111110;
|
|
cpu->isar.id_isar4 = 0x01310102;
|
|
cpu->isar.id_isar5 = 0x00000000;
|
|
cpu->isar.id_isar6 = 0x00000000;
|
|
}
|
|
|
|
static void cortex_m7_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V7);
|
|
set_feature(&cpu->env, ARM_FEATURE_M);
|
|
set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
|
|
set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
|
|
cpu->midr = 0x411fc272; /* r1p2 */
|
|
cpu->pmsav7_dregion = 8;
|
|
cpu->isar.mvfr0 = 0x10110221;
|
|
cpu->isar.mvfr1 = 0x12000011;
|
|
cpu->isar.mvfr2 = 0x00000040;
|
|
cpu->id_pfr0 = 0x00000030;
|
|
cpu->id_pfr1 = 0x00000200;
|
|
cpu->isar.id_dfr0 = 0x00100000;
|
|
cpu->id_afr0 = 0x00000000;
|
|
cpu->isar.id_mmfr0 = 0x00100030;
|
|
cpu->isar.id_mmfr1 = 0x00000000;
|
|
cpu->isar.id_mmfr2 = 0x01000000;
|
|
cpu->isar.id_mmfr3 = 0x00000000;
|
|
cpu->isar.id_isar0 = 0x01101110;
|
|
cpu->isar.id_isar1 = 0x02112000;
|
|
cpu->isar.id_isar2 = 0x20232231;
|
|
cpu->isar.id_isar3 = 0x01111131;
|
|
cpu->isar.id_isar4 = 0x01310132;
|
|
cpu->isar.id_isar5 = 0x00000000;
|
|
cpu->isar.id_isar6 = 0x00000000;
|
|
}
|
|
|
|
static void cortex_m33_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V8);
|
|
set_feature(&cpu->env, ARM_FEATURE_M);
|
|
set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
|
|
set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
|
|
set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
|
|
cpu->midr = 0x410fd213; /* r0p3 */
|
|
cpu->pmsav7_dregion = 16;
|
|
cpu->sau_sregion = 8;
|
|
cpu->isar.mvfr0 = 0x10110021;
|
|
cpu->isar.mvfr1 = 0x11000011;
|
|
cpu->isar.mvfr2 = 0x00000040;
|
|
cpu->id_pfr0 = 0x00000030;
|
|
cpu->id_pfr1 = 0x00000210;
|
|
cpu->isar.id_dfr0 = 0x00200000;
|
|
cpu->id_afr0 = 0x00000000;
|
|
cpu->isar.id_mmfr0 = 0x00101F40;
|
|
cpu->isar.id_mmfr1 = 0x00000000;
|
|
cpu->isar.id_mmfr2 = 0x01000000;
|
|
cpu->isar.id_mmfr3 = 0x00000000;
|
|
cpu->isar.id_isar0 = 0x01101110;
|
|
cpu->isar.id_isar1 = 0x02212000;
|
|
cpu->isar.id_isar2 = 0x20232232;
|
|
cpu->isar.id_isar3 = 0x01111131;
|
|
cpu->isar.id_isar4 = 0x01310132;
|
|
cpu->isar.id_isar5 = 0x00000000;
|
|
cpu->isar.id_isar6 = 0x00000000;
|
|
cpu->clidr = 0x00000000;
|
|
cpu->ctr = 0x8000c000;
|
|
}
|
|
|
|
static void arm_v7m_class_init(struct uc_struct *uc, CPUClass *oc, void *data)
|
|
{
|
|
ARMCPUClass *acc = ARM_CPU_CLASS(oc);
|
|
CPUClass *cc = CPU_CLASS(oc);
|
|
|
|
acc->info = data;
|
|
cc->do_interrupt = arm_v7m_cpu_do_interrupt;
|
|
|
|
cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
|
|
}
|
|
|
|
static ARMCPRegInfo cortexr5_cp_reginfo[] = {
|
|
/* Dummy the TCM region regs for the moment */
|
|
{ .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_CONST },
|
|
{ .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
|
|
.access = PL1_RW, .type = ARM_CP_CONST },
|
|
{ .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
|
|
.opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static void cortex_r5_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V7);
|
|
set_feature(&cpu->env, ARM_FEATURE_V7MP);
|
|
set_feature(&cpu->env, ARM_FEATURE_PMSA);
|
|
set_feature(&cpu->env, ARM_FEATURE_PMU);
|
|
cpu->midr = 0x411fc153; /* r1p3 */
|
|
cpu->id_pfr0 = 0x0131;
|
|
cpu->id_pfr1 = 0x001;
|
|
cpu->isar.id_dfr0 = 0x010400;
|
|
cpu->id_afr0 = 0x0;
|
|
cpu->isar.id_mmfr0 = 0x0210030;
|
|
cpu->isar.id_mmfr1 = 0x00000000;
|
|
cpu->isar.id_mmfr2 = 0x01200000;
|
|
cpu->isar.id_mmfr3 = 0x0211;
|
|
cpu->isar.id_isar0 = 0x02101111;
|
|
cpu->isar.id_isar1 = 0x13112111;
|
|
cpu->isar.id_isar2 = 0x21232141;
|
|
cpu->isar.id_isar3 = 0x01112131;
|
|
cpu->isar.id_isar4 = 0x0010142;
|
|
cpu->isar.id_isar5 = 0x0;
|
|
cpu->isar.id_isar6 = 0x0;
|
|
cpu->mp_is_up = true;
|
|
cpu->pmsav7_dregion = 16;
|
|
define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
|
|
}
|
|
|
|
static void cortex_r5f_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
cortex_r5_initfn(uc, obj);
|
|
cpu->isar.mvfr0 = 0x10110221;
|
|
cpu->isar.mvfr1 = 0x00000011;
|
|
}
|
|
|
|
static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
|
|
{ .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
|
|
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static void cortex_a8_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V7);
|
|
set_feature(&cpu->env, ARM_FEATURE_NEON);
|
|
set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
|
|
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
|
|
set_feature(&cpu->env, ARM_FEATURE_EL3);
|
|
cpu->midr = 0x410fc080;
|
|
cpu->reset_fpsid = 0x410330c0;
|
|
cpu->isar.mvfr0 = 0x11110222;
|
|
cpu->isar.mvfr1 = 0x00011111;
|
|
cpu->ctr = 0x82048004;
|
|
cpu->reset_sctlr = 0x00c50078;
|
|
cpu->id_pfr0 = 0x1031;
|
|
cpu->id_pfr1 = 0x11;
|
|
cpu->isar.id_dfr0 = 0x400;
|
|
cpu->id_afr0 = 0;
|
|
cpu->isar.id_mmfr0 = 0x31100003;
|
|
cpu->isar.id_mmfr1 = 0x20000000;
|
|
cpu->isar.id_mmfr2 = 0x01202000;
|
|
cpu->isar.id_mmfr3 = 0x11;
|
|
cpu->isar.id_isar0 = 0x00101111;
|
|
cpu->isar.id_isar1 = 0x12112111;
|
|
cpu->isar.id_isar2 = 0x21232031;
|
|
cpu->isar.id_isar3 = 0x11112131;
|
|
cpu->isar.id_isar4 = 0x00111142;
|
|
cpu->isar.dbgdidr = 0x15141000;
|
|
cpu->clidr = (1 << 27) | (2 << 24) | 3;
|
|
cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
|
|
cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
|
|
cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
|
|
cpu->reset_auxcr = 2;
|
|
define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
|
|
}
|
|
|
|
static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
|
|
/* power_control should be set to maximum latency. Again,
|
|
* default to 0 and set by private hook
|
|
*/
|
|
{ .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
|
|
{ .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
|
|
{ .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
|
|
{ .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
|
|
/* TLB lockdown control */
|
|
{ .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
|
|
.access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
|
|
{ .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
|
|
.access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
|
|
{ .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
|
|
.access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
|
|
{ .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
|
|
.access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
|
|
{ .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
|
|
.access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static void cortex_a9_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V7);
|
|
set_feature(&cpu->env, ARM_FEATURE_NEON);
|
|
set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
|
|
set_feature(&cpu->env, ARM_FEATURE_EL3);
|
|
/* Note that A9 supports the MP extensions even for
|
|
* A9UP and single-core A9MP (which are both different
|
|
* and valid configurations; we don't model A9UP).
|
|
*/
|
|
set_feature(&cpu->env, ARM_FEATURE_V7MP);
|
|
set_feature(&cpu->env, ARM_FEATURE_CBAR);
|
|
cpu->midr = 0x410fc090;
|
|
cpu->reset_fpsid = 0x41033090;
|
|
cpu->isar.mvfr0 = 0x11110222;
|
|
cpu->isar.mvfr1 = 0x01111111;
|
|
cpu->ctr = 0x80038003;
|
|
cpu->reset_sctlr = 0x00c50078;
|
|
cpu->id_pfr0 = 0x1031;
|
|
cpu->id_pfr1 = 0x11;
|
|
cpu->isar.id_dfr0 = 0x000;
|
|
cpu->id_afr0 = 0;
|
|
cpu->isar.id_mmfr0 = 0x00100103;
|
|
cpu->isar.id_mmfr1 = 0x20000000;
|
|
cpu->isar.id_mmfr2 = 0x01230000;
|
|
cpu->isar.id_mmfr3 = 0x00002111;
|
|
cpu->isar.id_isar0 = 0x00101111;
|
|
cpu->isar.id_isar1 = 0x13112111;
|
|
cpu->isar.id_isar2 = 0x21232041;
|
|
cpu->isar.id_isar3 = 0x11112131;
|
|
cpu->isar.id_isar4 = 0x00111142;
|
|
cpu->isar.dbgdidr = 0x35141000;
|
|
cpu->clidr = (1 << 27) | (1 << 24) | 3;
|
|
cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
|
|
cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
|
|
define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
|
|
}
|
|
|
|
uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
#if 0
|
|
MachineState *ms = MACHINE(qdev_get_machine());
|
|
|
|
/* Linux wants the number of processors from here.
|
|
* Might as well set the interrupt-controller bit too.
|
|
*/
|
|
return ((ms->smp.cpus - 1) << 24) | (1 << 23);
|
|
#endif
|
|
return (1 << 23);
|
|
}
|
|
|
|
static ARMCPRegInfo cortexa15_cp_reginfo[] = {
|
|
{ .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
|
|
.access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
|
|
.writefn = arm_cp_write_ignore },
|
|
{ .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
|
|
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static void cortex_a7_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V7VE);
|
|
set_feature(&cpu->env, ARM_FEATURE_NEON);
|
|
set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
|
|
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
|
|
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
|
|
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
|
|
set_feature(&cpu->env, ARM_FEATURE_EL2);
|
|
set_feature(&cpu->env, ARM_FEATURE_EL3);
|
|
set_feature(&cpu->env, ARM_FEATURE_PMU);
|
|
cpu->midr = 0x410fc075;
|
|
cpu->reset_fpsid = 0x41023075;
|
|
cpu->isar.mvfr0 = 0x10110222;
|
|
cpu->isar.mvfr1 = 0x11111111;
|
|
cpu->ctr = 0x84448003;
|
|
cpu->reset_sctlr = 0x00c50078;
|
|
cpu->id_pfr0 = 0x00001131;
|
|
cpu->id_pfr1 = 0x00011011;
|
|
cpu->isar.id_dfr0 = 0x02010555;
|
|
cpu->id_afr0 = 0x00000000;
|
|
cpu->isar.id_mmfr0 = 0x10101105;
|
|
cpu->isar.id_mmfr1 = 0x40000000;
|
|
cpu->isar.id_mmfr2 = 0x01240000;
|
|
cpu->isar.id_mmfr3 = 0x02102211;
|
|
/* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
|
|
* table 4-41 gives 0x02101110, which includes the arm div insns.
|
|
*/
|
|
cpu->isar.id_isar0 = 0x02101110;
|
|
cpu->isar.id_isar1 = 0x13112111;
|
|
cpu->isar.id_isar2 = 0x21232041;
|
|
cpu->isar.id_isar3 = 0x11112131;
|
|
cpu->isar.id_isar4 = 0x10011142;
|
|
cpu->isar.dbgdidr = 0x3515f005;
|
|
cpu->clidr = 0x0a200023;
|
|
cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
|
|
cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
|
|
cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
|
|
define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
|
|
}
|
|
|
|
static void cortex_a15_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V7VE);
|
|
set_feature(&cpu->env, ARM_FEATURE_NEON);
|
|
set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
|
|
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
|
|
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
|
|
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
|
|
set_feature(&cpu->env, ARM_FEATURE_EL2);
|
|
set_feature(&cpu->env, ARM_FEATURE_EL3);
|
|
set_feature(&cpu->env, ARM_FEATURE_PMU);
|
|
cpu->midr = 0x412fc0f1;
|
|
cpu->reset_fpsid = 0x410430f0;
|
|
cpu->isar.mvfr0 = 0x10110222;
|
|
cpu->isar.mvfr1 = 0x11111111;
|
|
cpu->ctr = 0x8444c004;
|
|
cpu->reset_sctlr = 0x00c50078;
|
|
cpu->id_pfr0 = 0x00001131;
|
|
cpu->id_pfr1 = 0x00011011;
|
|
cpu->isar.id_dfr0 = 0x02010555;
|
|
cpu->id_afr0 = 0x00000000;
|
|
cpu->isar.id_mmfr0 = 0x10201105;
|
|
cpu->isar.id_mmfr1 = 0x20000000;
|
|
cpu->isar.id_mmfr2 = 0x01240000;
|
|
cpu->isar.id_mmfr3 = 0x02102211;
|
|
cpu->isar.id_isar0 = 0x02101110;
|
|
cpu->isar.id_isar1 = 0x13112111;
|
|
cpu->isar.id_isar2 = 0x21232041;
|
|
cpu->isar.id_isar3 = 0x11112131;
|
|
cpu->isar.id_isar4 = 0x10011142;
|
|
cpu->isar.dbgdidr = 0x3515f021;
|
|
cpu->clidr = 0x0a200023;
|
|
cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
|
|
cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
|
|
cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
|
|
define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
|
|
}
|
|
|
|
static void ti925t_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
set_feature(&cpu->env, ARM_FEATURE_V4T);
|
|
set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
|
|
cpu->midr = ARM_CPUID_TI925T;
|
|
cpu->ctr = 0x5109149;
|
|
cpu->reset_sctlr = 0x00000070;
|
|
}
|
|
|
|
static void sa1100_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
|
|
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
|
|
cpu->midr = 0x4401A11B;
|
|
cpu->reset_sctlr = 0x00000070;
|
|
}
|
|
|
|
static void sa1110_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
|
|
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
|
|
cpu->midr = 0x6901B119;
|
|
cpu->reset_sctlr = 0x00000070;
|
|
}
|
|
|
|
static void pxa250_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V5);
|
|
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
|
|
cpu->midr = 0x69052100;
|
|
cpu->ctr = 0xd172172;
|
|
cpu->reset_sctlr = 0x00000078;
|
|
}
|
|
|
|
static void pxa255_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V5);
|
|
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
|
|
cpu->midr = 0x69052d00;
|
|
cpu->ctr = 0xd172172;
|
|
cpu->reset_sctlr = 0x00000078;
|
|
}
|
|
|
|
static void pxa260_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V5);
|
|
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
|
|
cpu->midr = 0x69052903;
|
|
cpu->ctr = 0xd172172;
|
|
cpu->reset_sctlr = 0x00000078;
|
|
}
|
|
|
|
static void pxa261_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V5);
|
|
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
|
|
cpu->midr = 0x69052d05;
|
|
cpu->ctr = 0xd172172;
|
|
cpu->reset_sctlr = 0x00000078;
|
|
}
|
|
|
|
static void pxa262_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V5);
|
|
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
|
|
cpu->midr = 0x69052d06;
|
|
cpu->ctr = 0xd172172;
|
|
cpu->reset_sctlr = 0x00000078;
|
|
}
|
|
|
|
static void pxa270a0_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V5);
|
|
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
|
|
set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
|
|
cpu->midr = 0x69054110;
|
|
cpu->ctr = 0xd172172;
|
|
cpu->reset_sctlr = 0x00000078;
|
|
}
|
|
|
|
static void pxa270a1_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V5);
|
|
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
|
|
set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
|
|
cpu->midr = 0x69054111;
|
|
cpu->ctr = 0xd172172;
|
|
cpu->reset_sctlr = 0x00000078;
|
|
}
|
|
|
|
static void pxa270b0_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V5);
|
|
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
|
|
set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
|
|
cpu->midr = 0x69054112;
|
|
cpu->ctr = 0xd172172;
|
|
cpu->reset_sctlr = 0x00000078;
|
|
}
|
|
|
|
static void pxa270b1_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V5);
|
|
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
|
|
set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
|
|
cpu->midr = 0x69054113;
|
|
cpu->ctr = 0xd172172;
|
|
cpu->reset_sctlr = 0x00000078;
|
|
}
|
|
|
|
static void pxa270c0_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V5);
|
|
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
|
|
set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
|
|
cpu->midr = 0x69054114;
|
|
cpu->ctr = 0xd172172;
|
|
cpu->reset_sctlr = 0x00000078;
|
|
}
|
|
|
|
static void pxa270c5_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
set_feature(&cpu->env, ARM_FEATURE_V5);
|
|
set_feature(&cpu->env, ARM_FEATURE_XSCALE);
|
|
set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
|
|
cpu->midr = 0x69054117;
|
|
cpu->ctr = 0xd172172;
|
|
cpu->reset_sctlr = 0x00000078;
|
|
}
|
|
|
|
#ifndef TARGET_AARCH64
|
|
/* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
|
|
* otherwise, a CPU with as many features enabled as our emulation supports.
|
|
* The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
|
|
* this only needs to handle 32 bits.
|
|
*/
|
|
static void arm_max_initfn(struct uc_struct *uc, CPUState *obj)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(obj);
|
|
|
|
{
|
|
cortex_a15_initfn(uc, obj);
|
|
|
|
/* old-style VFP short-vector support */
|
|
FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1, cpu->isar.mvfr0);
|
|
|
|
// Unicorn: Enable this on ARM_MAX
|
|
//#ifdef CONFIG_USER_ONLY
|
|
/* We don't set these in system emulation mode for the moment,
|
|
* since we don't correctly set (all of) the ID registers to
|
|
* advertise them.
|
|
*/
|
|
set_feature(&cpu->env, ARM_FEATURE_V8);
|
|
{
|
|
uint32_t t;
|
|
|
|
t = cpu->isar.id_isar5;
|
|
FIELD_DP32(t, ID_ISAR5, AES, 2, t);
|
|
FIELD_DP32(t, ID_ISAR5, SHA1, 1, t);
|
|
FIELD_DP32(t, ID_ISAR5, SHA2, 1, t);
|
|
FIELD_DP32(t, ID_ISAR5, CRC32, 1, t);
|
|
FIELD_DP32(t, ID_ISAR5, RDM, 1, t);
|
|
FIELD_DP32(t, ID_ISAR5, VCMA, 1, t);
|
|
cpu->isar.id_isar5 = t;
|
|
|
|
t = cpu->isar.id_isar6;
|
|
FIELD_DP32(t, ID_ISAR6, JSCVT, 1, t);
|
|
FIELD_DP32(t, ID_ISAR6, DP, 1, t);
|
|
FIELD_DP32(t, ID_ISAR6, FHM, 1, t);
|
|
FIELD_DP32(t, ID_ISAR6, SB, 1, t);
|
|
FIELD_DP32(t, ID_ISAR6, SPECRES, 1, t);
|
|
cpu->isar.id_isar6 = t;
|
|
|
|
t = cpu->isar.mvfr1;
|
|
FIELD_DP32(t, MVFR1, FPHP, 2, t); /* v8.0 FP support */
|
|
cpu->isar.mvfr1 = t;
|
|
|
|
t = cpu->isar.mvfr2;
|
|
FIELD_DP32(t, MVFR2, SIMDMISC, 3, t); /* SIMD MaxNum */
|
|
FIELD_DP32(t, MVFR2, FPMISC, 4, t); /* FP MaxNum */
|
|
cpu->isar.mvfr2 = t;
|
|
|
|
t = cpu->isar.id_mmfr3;
|
|
FIELD_DP32(t, ID_MMFR3, PAN, 2, t); /* ATS1E1 */
|
|
cpu->isar.id_mmfr3 = t;
|
|
|
|
t = cpu->isar.id_mmfr4;
|
|
FIELD_DP32(t, ID_MMFR4, HPDS, 1, t); /* AA32HPD */
|
|
FIELD_DP32(t, ID_MMFR4, AC2, 1, t); /* ACTLR2, HACTLR2 */
|
|
FIELD_DP32(t, ID_MMFR4, CNP, 1, t); /* TTCNP */
|
|
cpu->isar.id_mmfr4 = t;
|
|
}
|
|
//#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#endif /* !defined(TARGET_AARCH64) */
|
|
|
|
struct ARMCPUInfo {
|
|
const char *name;
|
|
void (*initfn)(struct uc_struct *uc, CPUState *obj);
|
|
void (*class_init)(struct uc_struct *uc, CPUClass *oc, void *data);
|
|
};
|
|
|
|
#if !defined(TARGET_AARCH64)
|
|
static struct ARMCPUInfo arm_cpus[] = {
|
|
{ "arm926", arm926_initfn },
|
|
{ "arm946", arm946_initfn },
|
|
{ "arm1026", arm1026_initfn },
|
|
/* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
|
|
* older core than plain "arm1136". In particular this does not
|
|
* have the v6K features.
|
|
*/
|
|
{ "arm1136-r2", arm1136_r2_initfn },
|
|
{ "arm1136", arm1136_initfn },
|
|
{ "arm1176", arm1176_initfn },
|
|
{ "arm11mpcore", arm11mpcore_initfn },
|
|
{ "cortex-m0", cortex_m0_initfn, arm_v7m_class_init },
|
|
{ "cortex-m3", cortex_m3_initfn, arm_v7m_class_init },
|
|
{ "cortex-m4", cortex_m4_initfn, arm_v7m_class_init },
|
|
{ "cortex-m7", cortex_m7_initfn, arm_v7m_class_init },
|
|
{ "cortex-m33", cortex_m33_initfn, arm_v7m_class_init },
|
|
{ "cortex-r5", cortex_r5_initfn },
|
|
{ "cortex-r5f", cortex_r5f_initfn },
|
|
{ "cortex-a7", cortex_a7_initfn },
|
|
{ "cortex-a8", cortex_a8_initfn },
|
|
{ "cortex-a9", cortex_a9_initfn },
|
|
{ "cortex-a15", cortex_a15_initfn },
|
|
{ "ti925t", ti925t_initfn },
|
|
{ "sa1100", sa1100_initfn },
|
|
{ "sa1110", sa1110_initfn },
|
|
{ "pxa250", pxa250_initfn },
|
|
{ "pxa255", pxa255_initfn },
|
|
{ "pxa260", pxa260_initfn },
|
|
{ "pxa261", pxa261_initfn },
|
|
{ "pxa262", pxa262_initfn },
|
|
/* "pxa270" is an alias for "pxa270-a0" */
|
|
{ "pxa270", pxa270a0_initfn },
|
|
{ "pxa270-a0", pxa270a0_initfn },
|
|
{ "pxa270-a1", pxa270a1_initfn },
|
|
{ "pxa270-b0", pxa270b0_initfn },
|
|
{ "pxa270-b1", pxa270b1_initfn },
|
|
{ "pxa270-c0", pxa270c0_initfn },
|
|
{ "pxa270-c5", pxa270c5_initfn },
|
|
{ "max", arm_max_initfn },
|
|
};
|
|
#endif
|
|
|
|
void arm_cpu_class_init(struct uc_struct *uc, CPUClass *oc)
|
|
{
|
|
ARMCPUClass *acc = ARM_CPU_CLASS(oc);
|
|
CPUClass *cc = CPU_CLASS(acc);
|
|
|
|
/* parent class is CPUClass, parent_reset() is cpu_common_reset(). */
|
|
acc->parent_reset = cc->reset;
|
|
/* overwrite the CPUClass->reset to arch reset: arm_cpu_reset(). */
|
|
cc->reset = arm_cpu_reset;
|
|
|
|
cc->has_work = arm_cpu_has_work;
|
|
cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
|
|
cc->set_pc = arm_cpu_set_pc;
|
|
cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
|
|
cc->do_interrupt = arm_cpu_do_interrupt;
|
|
cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
|
|
cc->asidx_from_attrs = arm_asidx_from_attrs;
|
|
cc->tcg_initialize = arm_translate_init;
|
|
cc->tlb_fill_cpu = arm_cpu_tlb_fill;
|
|
cc->debug_excp_handler = arm_debug_excp_handler;
|
|
cc->do_unaligned_access = arm_cpu_do_unaligned_access;
|
|
}
|
|
|
|
static void arm_cpu_instance_init(CPUState *obj)
|
|
{
|
|
#if 0
|
|
ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
|
|
|
|
acc->info->initfn(obj);
|
|
#endif
|
|
arm_cpu_post_init(obj);
|
|
}
|
|
|
|
ARMCPU *cpu_arm_init(struct uc_struct *uc)
|
|
{
|
|
ARMCPU *cpu;
|
|
CPUState *cs;
|
|
CPUClass *cc;
|
|
CPUARMState *env;
|
|
|
|
// cpu->env is 16 bytes aligned
|
|
cpu = qemu_memalign(16, sizeof(*cpu));
|
|
if (cpu == NULL) {
|
|
return NULL;
|
|
}
|
|
memset((void*)cpu, 0, sizeof(*cpu));
|
|
|
|
#if !defined(TARGET_AARCH64)
|
|
if (uc->mode & UC_MODE_MCLASS) {
|
|
uc->cpu_model = UC_CPU_ARM_CORTEX_M33;
|
|
} else if (uc->mode & UC_MODE_ARM926) {
|
|
uc->cpu_model = UC_CPU_ARM_926;
|
|
} else if (uc->mode & UC_MODE_ARM946) {
|
|
uc->cpu_model = UC_CPU_ARM_946;
|
|
} else if (uc->mode & UC_MODE_ARM1176) {
|
|
uc->cpu_model = UC_CPU_ARM_1176;
|
|
} else if (uc->cpu_model == INT_MAX) {
|
|
if (uc->mode & UC_MODE_BIG_ENDIAN) {
|
|
uc->cpu_model = UC_CPU_ARM_1176; // For BE32 mode.
|
|
} else {
|
|
uc->cpu_model = UC_CPU_ARM_CORTEX_A15; // cortex-a15
|
|
}
|
|
} else if (uc->cpu_model >= ARR_SIZE(arm_cpus)) {
|
|
free(cpu);
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
cs = (CPUState *)cpu;
|
|
cc = (CPUClass *)&cpu->cc;
|
|
cs->cc = cc;
|
|
cs->uc = uc;
|
|
uc->cpu = (CPUState *)cpu;
|
|
|
|
/* init CPUClass */
|
|
cpu_class_init(uc, cc);
|
|
|
|
/* init ARMCPUClass */
|
|
arm_cpu_class_init(uc, cc);
|
|
|
|
/* init CPUState */
|
|
cpu_common_initfn(uc, cs);
|
|
|
|
/* init ARMCPU */
|
|
arm_cpu_initfn(uc, cs);
|
|
|
|
#if !defined(TARGET_AARCH64)
|
|
/* init ARM types */
|
|
if (arm_cpus[uc->cpu_model].class_init) {
|
|
arm_cpus[uc->cpu_model].class_init(uc, cc, uc);
|
|
}
|
|
if (arm_cpus[uc->cpu_model].initfn) {
|
|
arm_cpus[uc->cpu_model].initfn(uc, cs);
|
|
}
|
|
#endif
|
|
|
|
/* postinit ARMCPU */
|
|
arm_cpu_instance_init(cs);
|
|
|
|
/* realize ARMCPU */
|
|
arm_cpu_realizefn(uc, cs);
|
|
|
|
// init address space
|
|
cpu_address_space_init(cs, 0, cs->memory);
|
|
|
|
qemu_init_vcpu(cs);
|
|
|
|
// UC_MODE_BIG_ENDIAN means big endian code and big endian data (BE32), which
|
|
// is only supported before ARMv7-A (and it only makes sense in qemu usermode!).
|
|
//
|
|
// UC_MODE_ARMBE8 & BE32 difference shouldn't exist in fact. We do this for
|
|
// backward compatibility.
|
|
//
|
|
// UC_MODE_ARMBE8 -> little endian code, big endian data
|
|
// UC_MODE_ARMBE8 | UC_MODE_BIG_ENDIAN -> big endian code, big endian data
|
|
//
|
|
// In QEMU system, all arm instruction fetch **should be** little endian, however
|
|
// we hack it to support (usermode) BE32.
|
|
//
|
|
// Reference:
|
|
// https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Memory-Model/Endian-support/Instruction-endianness?lang=en
|
|
// https://developer.arm.com/documentation/den0024/a/ARMv8-Registers/Endianness
|
|
env = &cpu->env;
|
|
if (uc->mode & UC_MODE_ARMBE8 || uc->mode & UC_MODE_BIG_ENDIAN) {
|
|
// Big endian data access.
|
|
env->uncached_cpsr |= CPSR_E;
|
|
}
|
|
|
|
if (uc->mode & UC_MODE_BIG_ENDIAN) {
|
|
// Big endian code access.
|
|
env->cp15.sctlr_ns |= SCTLR_B;
|
|
}
|
|
|
|
// Backward compatiblity, start arm CPU in non-secure state.
|
|
env->cp15.scr_el3 |= SCR_NS;
|
|
|
|
arm_rebuild_hflags(env);
|
|
|
|
return cpu;
|
|
}
|