Files
unicorn/bindings/python/tests/test_arm64.py
@Antelox 6fbbf3089a Python binding setup refactoring + cibuildwheel workflow (#2026)
* Python bindings: Make the test scripts handy for pytest

* Python bindings: Update MANIFEST.in with new paths

* Update .gitignore to exclude PyCharm-related files/folders

* Python bindings: Update CMakeLists.txt in order to set CMAKE_OSX_ARCHITECTURES var

* Python bindings:
- Moved project package settings to the new TOML format
- Refactored setup.py to cleanup/improve the code and make it ready for cibuildwheel
- Updated README.md with the package long description part
- Removed setup.cfg since universal wheel building will be deprecated soon

* Python bindings:
- Replaced old PyPI-publishing.yml workflow with brand-new one based on cibuildwheel
- Removed old building scripts

* Replaced macos-12 runner with macos-13 since it will be removed soon

* Python bindings: Specify SYSTEM_VERSION_COMPAT=0 env var for macos-13 x86_64 runner as per cibuildwheel warning message

* Python bindings: Enable i686 for debugging

* Python bindings: Enable DEBUG flag according to the presence of tag release

* Python bindings: Added matrix to cover i686 manylinux/musllinux builds

* Python bindings:
- Replaced macos-14 runner with macos-latest
- Bumped cibuildwheel GitHub action to 2.21.3 version

* Python bindings:
- Adapt test_uc_ctl_tb_cache test to the recent changes
- Fixed typos
- PEP8 fixes

* GitHub Action Workflow: Introduce BUILD_TYPE env var to select build type according to the presence of tag release

---------

Co-authored-by: mio <mio@lazym.io>
2024-10-17 19:35:42 +08:00

126 lines
3.5 KiB
Python
Executable File

#!/usr/bin/env python
# Sample code for ARM64 of Unicorn. Nguyen Anh Quynh <aquynh@gmail.com>
# Python sample ported by Loi Anh Tuan <loianhtuan@gmail.com>
from __future__ import print_function
from unicorn import *
from unicorn.arm64_const import *
# code to be emulated
ARM64_CODE = b"\xab\x05\x00\xb8\xaf\x05\x40\x38" # str x11, [x13]; ldrb x15, [x13]
# MSR code
ARM64_MRS_CODE = b"\x62\xd0\x3b\xd5" # mrs x2, tpidrro_el0
# memory address where emulation starts
ADDRESS = 0x10000
# callback for tracing basic blocks
def hook_block(uc, address, size, user_data):
print(">>> Tracing basic block at 0x%x, block size = 0x%x" % (address, size))
# callback for tracing instructions
def hook_code(uc, address, size, user_data):
print(">>> Tracing instruction at 0x%x, instruction size = 0x%x" % (address, size))
# Test ARM64
def test_arm64():
print("Emulate ARM64 code")
try:
# Initialize emulator in ARM mode
mu = Uc(UC_ARCH_ARM64, UC_MODE_ARM)
# map 2MB memory for this emulation
mu.mem_map(ADDRESS, 2 * 1024 * 1024)
# write machine code to be emulated to memory
mu.mem_write(ADDRESS, ARM64_CODE)
# initialize machine registers
mu.reg_write(UC_ARM64_REG_X11, 0x12345678)
mu.reg_write(UC_ARM64_REG_X13, 0x10008)
mu.reg_write(UC_ARM64_REG_X15, 0x33)
# tracing all basic blocks with customized callback
mu.hook_add(UC_HOOK_BLOCK, hook_block)
# tracing one instruction with customized callback
mu.hook_add(UC_HOOK_CODE, hook_code, begin=ADDRESS, end=ADDRESS)
# emulate machine code in infinite time
mu.emu_start(ADDRESS, ADDRESS + len(ARM64_CODE))
# now print out some registers
print(">>> Emulation done. Below is the CPU context")
print(">>> As little endian, X15 should be 0x78:")
x11 = mu.reg_read(UC_ARM64_REG_X11)
x13 = mu.reg_read(UC_ARM64_REG_X13)
x15 = mu.reg_read(UC_ARM64_REG_X15)
print(">>> X15 = 0x%x" % x15)
except UcError as e:
print("ERROR: %s" % e)
def test_arm64_read_sctlr():
print("Read SCTLR_EL1")
try:
# Initialize emulator in ARM mode
mu = Uc(UC_ARCH_ARM64, UC_MODE_ARM)
# Read SCTLR_EL1
# crn = 1;
# crm = 0;
# op0 = 3;
# op1 = 0;
# op2 = 0;
val = mu.reg_read(UC_ARM64_REG_CP_REG, (1, 0, 3, 0, 0))
print(">>> SCTLR_EL1 = 0x%x" % val)
except UcError as e:
print("ERROR: %s" % e)
def test_arm64_hook_mrs():
def _hook_mrs(uc, reg, cp_reg, _):
print(f">>> Hook MRS instruction: reg = 0x{reg:x}(UC_ARM64_REG_X2) cp_reg = {cp_reg}")
uc.reg_write(reg, 0x114514)
print(">>> Write 0x114514 to X")
# Skip MRS instruction
return True
print("Test hook MRS instruction")
try:
# Initialize emulator in ARM mode
mu = Uc(UC_ARCH_ARM64, UC_MODE_ARM)
# Map an area for code
mu.mem_map(0x1000, 0x1000)
# Write code
mu.mem_write(0x1000, ARM64_MRS_CODE)
# Hook MRS instruction
mu.hook_add(UC_HOOK_INSN, _hook_mrs, None, 1, 0, UC_ARM64_INS_MRS)
# Start emulation
mu.emu_start(0x1000, 0x1000 + len(ARM64_MRS_CODE))
print(f">>> X2 = {mu.reg_read(UC_ARM64_REG_X2):x}")
except UcError as e:
print("ERROR: %s" % e)
if __name__ == '__main__':
test_arm64()
print("=" * 26)
test_arm64_read_sctlr()
print("=" * 26)
test_arm64_hook_mrs()