Files
unicorn/qemu/target/mips/unicorn.c
Robert Xiao 4055a5ab10 Implement uc_reg_{read,write}{,_batch}2 APIs.
These APIs take size parameters, which can be used to properly bounds-check the
inputs and outputs for various registers. Additionally, all backends now throw
UC_ERR_ARG if the input register numbers are invalid.

Completes #1831.
2023-06-16 15:23:42 -07:00

301 lines
8.3 KiB
C

/* Unicorn Emulator Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2015 */
/* Modified for Unicorn Engine by Chen Huitao<chenhuitao@hfmrit.com>, 2020 */
#include "sysemu/cpus.h"
#include "cpu.h"
#include "unicorn_common.h"
#include "uc_priv.h"
#include "unicorn.h"
#include "internal.h"
#ifdef TARGET_MIPS64
typedef uint64_t mipsreg_t;
#else
typedef uint32_t mipsreg_t;
#endif
MIPSCPU *cpu_mips_init(struct uc_struct *uc);
static void mips_set_pc(struct uc_struct *uc, uint64_t address)
{
((CPUMIPSState *)uc->cpu->env_ptr)->active_tc.PC = address;
}
static uint64_t mips_get_pc(struct uc_struct *uc)
{
return ((CPUMIPSState *)uc->cpu->env_ptr)->active_tc.PC;
}
static void mips_release(void *ctx)
{
int i;
TCGContext *tcg_ctx = (TCGContext *)ctx;
MIPSCPU *cpu = (MIPSCPU *)tcg_ctx->uc->cpu;
CPUTLBDesc *d = cpu->neg.tlb.d;
CPUTLBDescFast *f = cpu->neg.tlb.f;
CPUTLBDesc *desc;
CPUTLBDescFast *fast;
release_common(ctx);
for (i = 0; i < NB_MMU_MODES; i++) {
desc = &(d[i]);
fast = &(f[i]);
g_free(desc->iotlb);
g_free(fast->table);
}
g_free(cpu->env.mvp);
g_free(cpu->env.tlb);
}
void mips_reg_reset(struct uc_struct *uc)
{
CPUArchState *env;
(void)uc;
env = uc->cpu->env_ptr;
memset(env->active_tc.gpr, 0, sizeof(env->active_tc.gpr));
env->active_tc.PC = 0;
}
static uc_err reg_read(CPUMIPSState *env, unsigned int regid, void *value,
size_t *size)
{
uc_err ret = UC_ERR_ARG;
if (regid >= UC_MIPS_REG_0 && regid <= UC_MIPS_REG_31) {
CHECK_REG_TYPE(mipsreg_t);
*(mipsreg_t *)value = env->active_tc.gpr[regid - UC_MIPS_REG_0];
} else {
switch (regid) {
default:
break;
case UC_MIPS_REG_HI:
CHECK_REG_TYPE(mipsreg_t);
*(mipsreg_t *)value = env->active_tc.HI[0];
break;
case UC_MIPS_REG_LO:
CHECK_REG_TYPE(mipsreg_t);
*(mipsreg_t *)value = env->active_tc.LO[0];
break;
case UC_MIPS_REG_PC:
CHECK_REG_TYPE(mipsreg_t);
*(mipsreg_t *)value = env->active_tc.PC;
break;
case UC_MIPS_REG_CP0_CONFIG3:
CHECK_REG_TYPE(mipsreg_t);
*(mipsreg_t *)value = env->CP0_Config3;
break;
case UC_MIPS_REG_CP0_STATUS:
CHECK_REG_TYPE(mipsreg_t);
*(mipsreg_t *)value = env->CP0_Status;
break;
case UC_MIPS_REG_CP0_USERLOCAL:
CHECK_REG_TYPE(mipsreg_t);
*(mipsreg_t *)value = env->active_tc.CP0_UserLocal;
break;
}
}
return ret;
}
static uc_err reg_write(CPUMIPSState *env, unsigned int regid,
const void *value, size_t *size)
{
uc_err ret = UC_ERR_ARG;
if (regid >= UC_MIPS_REG_0 && regid <= UC_MIPS_REG_31) {
CHECK_REG_TYPE(mipsreg_t);
env->active_tc.gpr[regid - UC_MIPS_REG_0] = *(mipsreg_t *)value;
} else {
switch (regid) {
default:
break;
case UC_MIPS_REG_HI:
CHECK_REG_TYPE(mipsreg_t);
env->active_tc.HI[0] = *(mipsreg_t *)value;
break;
case UC_MIPS_REG_LO:
CHECK_REG_TYPE(mipsreg_t);
env->active_tc.LO[0] = *(mipsreg_t *)value;
break;
case UC_MIPS_REG_PC:
CHECK_REG_TYPE(mipsreg_t);
env->active_tc.PC = *(mipsreg_t *)value;
break;
case UC_MIPS_REG_CP0_CONFIG3:
CHECK_REG_TYPE(mipsreg_t);
env->CP0_Config3 = *(mipsreg_t *)value;
break;
case UC_MIPS_REG_CP0_STATUS:
// TODO: ALL CP0 REGS
// https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00090-2B-MIPS32PRA-AFP-06.02.pdf
// https://s3-eu-west-1.amazonaws.com/downloads-mips/documents/MD00582-2B-microMIPS32-AFP-05.04.pdf
CHECK_REG_TYPE(mipsreg_t);
env->CP0_Status = *(mipsreg_t *)value;
compute_hflags(env);
break;
case UC_MIPS_REG_CP0_USERLOCAL:
CHECK_REG_TYPE(mipsreg_t);
env->active_tc.CP0_UserLocal = *(mipsreg_t *)value;
break;
}
}
return ret;
}
int mips_reg_read(struct uc_struct *uc, unsigned int *regs, void *const *vals,
size_t *sizes, int count)
{
CPUMIPSState *env = &(MIPS_CPU(uc->cpu)->env);
int i;
uc_err err;
for (i = 0; i < count; i++) {
unsigned int regid = regs[i];
void *value = vals[i];
err = reg_read(env, regid, value, sizes ? sizes + i : NULL);
if (err) {
return err;
}
}
return UC_ERR_OK;
}
int mips_reg_write(struct uc_struct *uc, unsigned int *regs,
const void *const *vals, size_t *sizes, int count)
{
CPUMIPSState *env = &(MIPS_CPU(uc->cpu)->env);
int i;
uc_err err;
for (i = 0; i < count; i++) {
unsigned int regid = regs[i];
const void *value = vals[i];
err = reg_write(env, regid, value, sizes ? sizes + i : NULL);
if (err) {
return err;
}
if (regid == UC_MIPS_REG_PC) {
// force to quit execution and flush TB
uc->quit_request = true;
break_translation_loop(uc);
}
}
return UC_ERR_OK;
}
DEFAULT_VISIBILITY
#ifdef TARGET_MIPS64
#ifdef TARGET_WORDS_BIGENDIAN
int mips64_context_reg_read(struct uc_context *ctx, unsigned int *regs,
void *const *vals, size_t *sizes, int count)
#else
int mips64el_context_reg_read(struct uc_context *ctx, unsigned int *regs,
void *const *vals, size_t *sizes, int count)
#endif
#else // if TARGET_MIPS
#ifdef TARGET_WORDS_BIGENDIAN
int mips_context_reg_read(struct uc_context *ctx, unsigned int *regs,
void *const *vals, size_t *sizes, int count)
#else
int mipsel_context_reg_read(struct uc_context *ctx, unsigned int *regs,
void *const *vals, size_t *sizes, int count)
#endif
#endif
{
CPUMIPSState *env = (CPUMIPSState *)ctx->data;
int i;
uc_err err;
for (i = 0; i < count; i++) {
unsigned int regid = regs[i];
void *value = vals[i];
err = reg_read(env, regid, value, sizes ? sizes + i : NULL);
if (err) {
return err;
}
}
return UC_ERR_OK;
}
DEFAULT_VISIBILITY
#ifdef TARGET_MIPS64
#ifdef TARGET_WORDS_BIGENDIAN
int mips64_context_reg_write(struct uc_context *ctx, unsigned int *regs,
const void *const *vals, size_t *sizes, int count)
#else
int mips64el_context_reg_write(struct uc_context *ctx, unsigned int *regs,
const void *const *vals, size_t *sizes,
int count)
#endif
#else // if TARGET_MIPS
#ifdef TARGET_WORDS_BIGENDIAN
int mips_context_reg_write(struct uc_context *ctx, unsigned int *regs,
const void *const *vals, size_t *sizes, int count)
#else
int mipsel_context_reg_write(struct uc_context *ctx, unsigned int *regs,
const void *const *vals, size_t *sizes, int count)
#endif
#endif
{
CPUMIPSState *env = (CPUMIPSState *)ctx->data;
int i;
uc_err err;
for (i = 0; i < count; i++) {
unsigned int regid = regs[i];
const void *value = vals[i];
err = reg_write(env, regid, value, sizes ? sizes + i : NULL);
if (err) {
return err;
}
}
return UC_ERR_OK;
}
static int mips_cpus_init(struct uc_struct *uc, const char *cpu_model)
{
MIPSCPU *cpu;
cpu = cpu_mips_init(uc);
if (cpu == NULL) {
return -1;
}
return 0;
}
DEFAULT_VISIBILITY
#ifdef TARGET_MIPS64
#ifdef TARGET_WORDS_BIGENDIAN
void mips64_uc_init(struct uc_struct *uc)
#else
void mips64el_uc_init(struct uc_struct *uc)
#endif
#else // if TARGET_MIPS
#ifdef TARGET_WORDS_BIGENDIAN
void mips_uc_init(struct uc_struct *uc)
#else
void mipsel_uc_init(struct uc_struct *uc)
#endif
#endif
{
uc->reg_read = mips_reg_read;
uc->reg_write = mips_reg_write;
uc->reg_reset = mips_reg_reset;
uc->release = mips_release;
uc->set_pc = mips_set_pc;
uc->get_pc = mips_get_pc;
uc->cpus_init = mips_cpus_init;
uc->cpu_context_size = offsetof(CPUMIPSState, end_reset_fields);
uc_common_init(uc);
}