/* Unicorn Emulator Engine */ /* By Nguyen Anh Quynh , 2015 */ /* Modified for Unicorn Engine by Chen Huitao, 2020 */ #include "uc_priv.h" #include "sysemu/cpus.h" #include "cpu.h" #include "unicorn_common.h" #include "cpu_bits.h" #include #include "unicorn.h" static int csrno_map[] = { CSR_USTATUS, CSR_UIE, CSR_UTVEC, CSR_USCRATCH, CSR_UEPC, CSR_UCAUSE, CSR_UTVAL, CSR_UIP, CSR_FFLAGS, CSR_FRM, CSR_FCSR, CSR_CYCLE, CSR_TIME, CSR_INSTRET, CSR_HPMCOUNTER3, CSR_HPMCOUNTER4, CSR_HPMCOUNTER5, CSR_HPMCOUNTER6, CSR_HPMCOUNTER7, CSR_HPMCOUNTER8, CSR_HPMCOUNTER9, CSR_HPMCOUNTER10, CSR_HPMCOUNTER11, CSR_HPMCOUNTER12, CSR_HPMCOUNTER13, CSR_HPMCOUNTER14, CSR_HPMCOUNTER15, CSR_HPMCOUNTER16, CSR_HPMCOUNTER17, CSR_HPMCOUNTER18, CSR_HPMCOUNTER19, CSR_HPMCOUNTER20, CSR_HPMCOUNTER21, CSR_HPMCOUNTER22, CSR_HPMCOUNTER23, CSR_HPMCOUNTER24, CSR_HPMCOUNTER25, CSR_HPMCOUNTER26, CSR_HPMCOUNTER27, CSR_HPMCOUNTER28, CSR_HPMCOUNTER29, CSR_HPMCOUNTER30, CSR_HPMCOUNTER31, CSR_CYCLEH, CSR_TIMEH, CSR_INSTRETH, CSR_HPMCOUNTER3H, CSR_HPMCOUNTER4H, CSR_HPMCOUNTER5H, CSR_HPMCOUNTER6H, CSR_HPMCOUNTER7H, CSR_HPMCOUNTER8H, CSR_HPMCOUNTER9H, CSR_HPMCOUNTER10H, CSR_HPMCOUNTER11H, CSR_HPMCOUNTER12H, CSR_HPMCOUNTER13H, CSR_HPMCOUNTER14H, CSR_HPMCOUNTER15H, CSR_HPMCOUNTER16H, CSR_HPMCOUNTER17H, CSR_HPMCOUNTER18H, CSR_HPMCOUNTER19H, CSR_HPMCOUNTER20H, CSR_HPMCOUNTER21H, CSR_HPMCOUNTER22H, CSR_HPMCOUNTER23H, CSR_HPMCOUNTER24H, CSR_HPMCOUNTER25H, CSR_HPMCOUNTER26H, CSR_HPMCOUNTER27H, CSR_HPMCOUNTER28H, CSR_HPMCOUNTER29H, CSR_HPMCOUNTER30H, CSR_HPMCOUNTER31H, CSR_MCYCLE, CSR_MINSTRET, CSR_MCYCLEH, CSR_MINSTRETH, CSR_MVENDORID, CSR_MARCHID, CSR_MIMPID, CSR_MHARTID, CSR_MSTATUS, CSR_MISA, CSR_MEDELEG, CSR_MIDELEG, CSR_MIE, CSR_MTVEC, CSR_MCOUNTEREN, CSR_MSTATUSH, CSR_MUCOUNTEREN, CSR_MSCOUNTEREN, CSR_MHCOUNTEREN, CSR_MSCRATCH, CSR_MEPC, CSR_MCAUSE, CSR_MTVAL, CSR_MIP, CSR_MBADADDR, CSR_SSTATUS, CSR_SEDELEG, CSR_SIDELEG, CSR_SIE, CSR_STVEC, CSR_SCOUNTEREN, CSR_SSCRATCH, CSR_SEPC, CSR_SCAUSE, CSR_STVAL, CSR_SIP, CSR_SBADADDR, CSR_SPTBR, CSR_SATP, CSR_HSTATUS, CSR_HEDELEG, CSR_HIDELEG, CSR_HIE, CSR_HCOUNTEREN, CSR_HTVAL, CSR_HIP, CSR_HTINST, CSR_HGATP, CSR_HTIMEDELTA, CSR_HTIMEDELTAH, }; #define csrno_count (sizeof(csrno_map) / sizeof(int)) RISCVCPU *cpu_riscv_init(struct uc_struct *uc); static void riscv_set_pc(struct uc_struct *uc, uint64_t address) { RISCV_CPU(uc->cpu)->env.pc = address; } static uint64_t riscv_get_pc(struct uc_struct *uc) { return RISCV_CPU(uc->cpu)->env.pc; } static void riscv_release(void *ctx) { int i; TCGContext *tcg_ctx = (TCGContext *)ctx; RISCVCPU *cpu = (RISCVCPU *)tcg_ctx->uc->cpu; CPUTLBDesc *d = cpu->neg.tlb.d; CPUTLBDescFast *f = cpu->neg.tlb.f; CPUTLBDesc *desc; CPUTLBDescFast *fast; release_common(ctx); for (i = 0; i < NB_MMU_MODES; i++) { desc = &(d[i]); fast = &(f[i]); g_free(desc->iotlb); g_free(fast->table); } } static void reg_reset(struct uc_struct *uc) {} static uc_err reg_read_priv(CPURISCVState *env, target_ulong *value) { // This structure is based on RISC-V Debug Specification 1.0.0-rc3, // Section 4.10.1, Virtual Debug Registers: Privilege Mode. // This encoding should match the decoding in reg_write_priv. target_ulong priv_value = 0; switch (env->priv) { default: // No other value should be possible, but we'll report // 0 (U-Mode) in this case since that's most conservative. break; case PRV_U: priv_value = 0; break; case PRV_S: priv_value = 1; break; case PRV_M: priv_value = 3; break; } if (riscv_cpu_virt_enabled(env)) { // The "v" bit is set to indicate either VS or VU mode. priv_value |= 0b100; } *value = priv_value; return UC_ERR_OK; } static uc_err reg_write_priv(CPURISCVState *env, target_ulong value) { // This structure is based on RISC-V Debug Specification 1.0.0-rc3, // Section 4.10.1, Virtual Debug Registers: Privilege Mode. // This decoding should match the encoding in reg_read_priv. if ((value & ~0b111) != 0) { // Only the low three bits are settable. return UC_ERR_ARG; } target_ulong prv = value & 0b11; bool v = (value & 0b100) != 0; switch (prv) { default: return UC_ERR_ARG; case 0: riscv_cpu_set_mode(env, PRV_U); break; case 1: riscv_cpu_set_mode(env, PRV_S); break; case 3: riscv_cpu_set_mode(env, PRV_M); break; } riscv_cpu_set_virt_enabled(env, v); return UC_ERR_OK; } DEFAULT_VISIBILITY uc_err reg_read(void *_env, int mode, unsigned int regid, void *value, size_t *size) { CPURISCVState *env = _env; uc_err ret = UC_ERR_ARG; if (regid >= UC_RISCV_REG_X0 && regid <= UC_RISCV_REG_X31) { #ifdef TARGET_RISCV64 CHECK_REG_TYPE(uint64_t); *(uint64_t *)value = env->gpr[regid - UC_RISCV_REG_X0]; #else CHECK_REG_TYPE(uint32_t); *(uint32_t *)value = env->gpr[regid - UC_RISCV_REG_X0]; #endif } else if (regid >= UC_RISCV_REG_F0 && regid <= UC_RISCV_REG_F31) { // "ft0".."ft31" CHECK_REG_TYPE(uint64_t); *(uint64_t *)value = env->fpr[regid - UC_RISCV_REG_F0]; } else if (regid >= UC_RISCV_REG_USTATUS && regid < UC_RISCV_REG_USTATUS + csrno_count) { target_ulong val; int csrno = csrno_map[regid - UC_RISCV_REG_USTATUS]; riscv_csrrw(env, csrno, &val, -1, 0); #ifdef TARGET_RISCV64 CHECK_REG_TYPE(uint64_t); *(uint64_t *)value = (uint64_t)val; #else CHECK_REG_TYPE(uint32_t); *(uint32_t *)value = (uint32_t)val; #endif } else { switch (regid) { default: break; case UC_RISCV_REG_PC: #ifdef TARGET_RISCV64 CHECK_REG_TYPE(uint64_t); *(uint64_t *)value = env->pc; #else CHECK_REG_TYPE(uint32_t); *(uint32_t *)value = env->pc; #endif break; case UC_RISCV_REG_PRIV:; target_ulong priv_value; ret = reg_read_priv(env, &priv_value); if (ret != UC_ERR_OK) { return ret; } #ifdef TARGET_RISCV64 CHECK_REG_TYPE(uint64_t); *(uint64_t *)value = priv_value; #else CHECK_REG_TYPE(uint32_t); *(uint32_t *)value = priv_value; #endif break; } } CHECK_RET_DEPRECATE(ret, regid); return ret; } DEFAULT_VISIBILITY uc_err reg_write(void *_env, int mode, unsigned int regid, const void *value, size_t *size, int *setpc) { CPURISCVState *env = _env; uc_err ret = UC_ERR_ARG; if (regid >= UC_RISCV_REG_X0 && regid <= UC_RISCV_REG_X31) { #ifdef TARGET_RISCV64 CHECK_REG_TYPE(uint64_t); env->gpr[regid - UC_RISCV_REG_X0] = *(uint64_t *)value; #else CHECK_REG_TYPE(uint32_t); env->gpr[regid - UC_RISCV_REG_X0] = *(uint32_t *)value; #endif } else if (regid >= UC_RISCV_REG_F0 && regid <= UC_RISCV_REG_F31) { // "ft0".."ft31" CHECK_REG_TYPE(uint64_t); env->fpr[regid - UC_RISCV_REG_F0] = *(uint64_t *)value; } else if (regid >= UC_RISCV_REG_USTATUS && regid < UC_RISCV_REG_USTATUS + csrno_count) { target_ulong val; int csrno = csrno_map[regid - UC_RISCV_REG_USTATUS]; #ifdef TARGET_RISCV64 CHECK_REG_TYPE(uint64_t); riscv_csrrw(env, csrno, &val, *(uint64_t *)value, -1); #else CHECK_REG_TYPE(uint32_t); riscv_csrrw(env, csrno, &val, *(uint32_t *)value, -1); #endif } else { switch (regid) { default: break; case UC_RISCV_REG_PC: #ifdef TARGET_RISCV64 CHECK_REG_TYPE(uint64_t); env->pc = *(uint64_t *)value; #else CHECK_REG_TYPE(uint32_t); env->pc = *(uint32_t *)value; #endif *setpc = 1; break; case UC_RISCV_REG_PRIV: #ifdef TARGET_RISCV64 CHECK_REG_TYPE(uint64_t); uint64_t val; val = *(uint64_t *)value; #else CHECK_REG_TYPE(uint32_t); uint32_t val; val = *(uint32_t *)value; #endif ret = reg_write_priv(env, (target_ulong)val); } } CHECK_RET_DEPRECATE(ret, regid); return ret; } static bool riscv_stop_interrupt(struct uc_struct *uc, int intno) { // detect stop exception switch (intno) { default: return false; case RISCV_EXCP_UNICORN_END: return true; case RISCV_EXCP_BREAKPOINT: uc->invalid_error = UC_ERR_EXCEPTION; return true; } } static bool riscv_insn_hook_validate(uint32_t insn_enum) { return false; } static int riscv_cpus_init(struct uc_struct *uc, const char *cpu_model) { RISCVCPU *cpu; cpu = cpu_riscv_init(uc); if (cpu == NULL) { return -1; } return 0; } DEFAULT_VISIBILITY void uc_init(struct uc_struct *uc) { uc->reg_read = reg_read; uc->reg_write = reg_write; uc->reg_reset = reg_reset; uc->release = riscv_release; uc->set_pc = riscv_set_pc; uc->get_pc = riscv_get_pc; uc->stop_interrupt = riscv_stop_interrupt; uc->insn_hook_validate = riscv_insn_hook_validate; uc->cpus_init = riscv_cpus_init; uc->cpu_context_size = offsetof(CPURISCVState, rdtime_fn); uc_common_init(uc); }