cleanup qemu/util code
This commit is contained in:
@@ -5,7 +5,6 @@ util-obj-y += module.o
|
||||
util-obj-y += bitmap.o bitops.o
|
||||
util-obj-y += error.o
|
||||
util-obj-y += aes.o
|
||||
util-obj-y += qemu-option.o
|
||||
util-obj-y += crc32c.o
|
||||
util-obj-y += host-utils.o
|
||||
util-obj-y += getauxval.o
|
||||
|
||||
593
qemu/util/aes.c
593
qemu/util/aes.c
@@ -1057,596 +1057,3 @@ const uint32_t AES_Td4[256] = {
|
||||
0xe1e1e1e1U, 0x69696969U, 0x14141414U, 0x63636363U,
|
||||
0x55555555U, 0x21212121U, 0x0c0c0c0cU, 0x7d7d7d7dU,
|
||||
};
|
||||
static const u32 rcon[] = {
|
||||
0x01000000, 0x02000000, 0x04000000, 0x08000000,
|
||||
0x10000000, 0x20000000, 0x40000000, 0x80000000,
|
||||
0x1B000000, 0x36000000, /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
|
||||
};
|
||||
|
||||
/**
|
||||
* Expand the cipher key into the encryption key schedule.
|
||||
*/
|
||||
int AES_set_encrypt_key(const unsigned char *userKey, const int bits,
|
||||
AES_KEY *key) {
|
||||
|
||||
u32 *rk;
|
||||
int i = 0;
|
||||
u32 temp;
|
||||
|
||||
if (!userKey || !key)
|
||||
return -1;
|
||||
if (bits != 128 && bits != 192 && bits != 256)
|
||||
return -2;
|
||||
|
||||
rk = key->rd_key;
|
||||
|
||||
if (bits==128)
|
||||
key->rounds = 10;
|
||||
else if (bits==192)
|
||||
key->rounds = 12;
|
||||
else
|
||||
key->rounds = 14;
|
||||
|
||||
rk[0] = GETU32(userKey );
|
||||
rk[1] = GETU32(userKey + 4);
|
||||
rk[2] = GETU32(userKey + 8);
|
||||
rk[3] = GETU32(userKey + 12);
|
||||
if (bits == 128) {
|
||||
while (1) {
|
||||
temp = rk[3];
|
||||
rk[4] = rk[0] ^
|
||||
(AES_Te4[(temp >> 16) & 0xff] & 0xff000000) ^
|
||||
(AES_Te4[(temp >> 8) & 0xff] & 0x00ff0000) ^
|
||||
(AES_Te4[(temp ) & 0xff] & 0x0000ff00) ^
|
||||
(AES_Te4[(temp >> 24) ] & 0x000000ff) ^
|
||||
rcon[i];
|
||||
rk[5] = rk[1] ^ rk[4];
|
||||
rk[6] = rk[2] ^ rk[5];
|
||||
rk[7] = rk[3] ^ rk[6];
|
||||
if (++i == 10) {
|
||||
return 0;
|
||||
}
|
||||
rk += 4;
|
||||
}
|
||||
}
|
||||
rk[4] = GETU32(userKey + 16);
|
||||
rk[5] = GETU32(userKey + 20);
|
||||
if (bits == 192) {
|
||||
while (1) {
|
||||
temp = rk[ 5];
|
||||
rk[ 6] = rk[ 0] ^
|
||||
(AES_Te4[(temp >> 16) & 0xff] & 0xff000000) ^
|
||||
(AES_Te4[(temp >> 8) & 0xff] & 0x00ff0000) ^
|
||||
(AES_Te4[(temp ) & 0xff] & 0x0000ff00) ^
|
||||
(AES_Te4[(temp >> 24) ] & 0x000000ff) ^
|
||||
rcon[i];
|
||||
rk[ 7] = rk[ 1] ^ rk[ 6];
|
||||
rk[ 8] = rk[ 2] ^ rk[ 7];
|
||||
rk[ 9] = rk[ 3] ^ rk[ 8];
|
||||
if (++i == 8) {
|
||||
return 0;
|
||||
}
|
||||
rk[10] = rk[ 4] ^ rk[ 9];
|
||||
rk[11] = rk[ 5] ^ rk[10];
|
||||
rk += 6;
|
||||
}
|
||||
}
|
||||
rk[6] = GETU32(userKey + 24);
|
||||
rk[7] = GETU32(userKey + 28);
|
||||
if (bits == 256) {
|
||||
while (1) {
|
||||
temp = rk[ 7];
|
||||
rk[ 8] = rk[ 0] ^
|
||||
(AES_Te4[(temp >> 16) & 0xff] & 0xff000000) ^
|
||||
(AES_Te4[(temp >> 8) & 0xff] & 0x00ff0000) ^
|
||||
(AES_Te4[(temp ) & 0xff] & 0x0000ff00) ^
|
||||
(AES_Te4[(temp >> 24) ] & 0x000000ff) ^
|
||||
rcon[i];
|
||||
rk[ 9] = rk[ 1] ^ rk[ 8];
|
||||
rk[10] = rk[ 2] ^ rk[ 9];
|
||||
rk[11] = rk[ 3] ^ rk[10];
|
||||
if (++i == 7) {
|
||||
return 0;
|
||||
}
|
||||
temp = rk[11];
|
||||
rk[12] = rk[ 4] ^
|
||||
(AES_Te4[(temp >> 24) ] & 0xff000000) ^
|
||||
(AES_Te4[(temp >> 16) & 0xff] & 0x00ff0000) ^
|
||||
(AES_Te4[(temp >> 8) & 0xff] & 0x0000ff00) ^
|
||||
(AES_Te4[(temp ) & 0xff] & 0x000000ff);
|
||||
rk[13] = rk[ 5] ^ rk[12];
|
||||
rk[14] = rk[ 6] ^ rk[13];
|
||||
rk[15] = rk[ 7] ^ rk[14];
|
||||
|
||||
rk += 8;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Expand the cipher key into the decryption key schedule.
|
||||
*/
|
||||
int AES_set_decrypt_key(const unsigned char *userKey, const int bits,
|
||||
AES_KEY *key) {
|
||||
|
||||
u32 *rk;
|
||||
int i, j, status;
|
||||
u32 temp;
|
||||
|
||||
/* first, start with an encryption schedule */
|
||||
status = AES_set_encrypt_key(userKey, bits, key);
|
||||
if (status < 0)
|
||||
return status;
|
||||
|
||||
rk = key->rd_key;
|
||||
|
||||
/* invert the order of the round keys: */
|
||||
for (i = 0, j = 4*(key->rounds); i < j; i += 4, j -= 4) {
|
||||
temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp;
|
||||
temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp;
|
||||
temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp;
|
||||
temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp;
|
||||
}
|
||||
/* apply the inverse MixColumn transform to all round keys but the first and the last: */
|
||||
for (i = 1; i < (key->rounds); i++) {
|
||||
rk += 4;
|
||||
rk[0] =
|
||||
AES_Td0[AES_Te4[(rk[0] >> 24) ] & 0xff] ^
|
||||
AES_Td1[AES_Te4[(rk[0] >> 16) & 0xff] & 0xff] ^
|
||||
AES_Td2[AES_Te4[(rk[0] >> 8) & 0xff] & 0xff] ^
|
||||
AES_Td3[AES_Te4[(rk[0] ) & 0xff] & 0xff];
|
||||
rk[1] =
|
||||
AES_Td0[AES_Te4[(rk[1] >> 24) ] & 0xff] ^
|
||||
AES_Td1[AES_Te4[(rk[1] >> 16) & 0xff] & 0xff] ^
|
||||
AES_Td2[AES_Te4[(rk[1] >> 8) & 0xff] & 0xff] ^
|
||||
AES_Td3[AES_Te4[(rk[1] ) & 0xff] & 0xff];
|
||||
rk[2] =
|
||||
AES_Td0[AES_Te4[(rk[2] >> 24) ] & 0xff] ^
|
||||
AES_Td1[AES_Te4[(rk[2] >> 16) & 0xff] & 0xff] ^
|
||||
AES_Td2[AES_Te4[(rk[2] >> 8) & 0xff] & 0xff] ^
|
||||
AES_Td3[AES_Te4[(rk[2] ) & 0xff] & 0xff];
|
||||
rk[3] =
|
||||
AES_Td0[AES_Te4[(rk[3] >> 24) ] & 0xff] ^
|
||||
AES_Td1[AES_Te4[(rk[3] >> 16) & 0xff] & 0xff] ^
|
||||
AES_Td2[AES_Te4[(rk[3] >> 8) & 0xff] & 0xff] ^
|
||||
AES_Td3[AES_Te4[(rk[3] ) & 0xff] & 0xff];
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifndef AES_ASM
|
||||
/*
|
||||
* Encrypt a single block
|
||||
* in and out can overlap
|
||||
*/
|
||||
void AES_encrypt(const unsigned char *in, unsigned char *out,
|
||||
const AES_KEY *key) {
|
||||
|
||||
const u32 *rk;
|
||||
u32 s0, s1, s2, s3, t0, t1, t2, t3;
|
||||
#ifndef FULL_UNROLL
|
||||
int r;
|
||||
#endif /* ?FULL_UNROLL */
|
||||
|
||||
assert(in && out && key);
|
||||
rk = key->rd_key;
|
||||
|
||||
/*
|
||||
* map byte array block to cipher state
|
||||
* and add initial round key:
|
||||
*/
|
||||
s0 = GETU32(in ) ^ rk[0];
|
||||
s1 = GETU32(in + 4) ^ rk[1];
|
||||
s2 = GETU32(in + 8) ^ rk[2];
|
||||
s3 = GETU32(in + 12) ^ rk[3];
|
||||
#ifdef FULL_UNROLL
|
||||
/* round 1: */
|
||||
t0 = AES_Te0[s0 >> 24] ^ AES_Te1[(s1 >> 16) & 0xff] ^ AES_Te2[(s2 >> 8) & 0xff] ^ AES_Te3[s3 & 0xff] ^ rk[ 4];
|
||||
t1 = AES_Te0[s1 >> 24] ^ AES_Te1[(s2 >> 16) & 0xff] ^ AES_Te2[(s3 >> 8) & 0xff] ^ AES_Te3[s0 & 0xff] ^ rk[ 5];
|
||||
t2 = AES_Te0[s2 >> 24] ^ AES_Te1[(s3 >> 16) & 0xff] ^ AES_Te2[(s0 >> 8) & 0xff] ^ AES_Te3[s1 & 0xff] ^ rk[ 6];
|
||||
t3 = AES_Te0[s3 >> 24] ^ AES_Te1[(s0 >> 16) & 0xff] ^ AES_Te2[(s1 >> 8) & 0xff] ^ AES_Te3[s2 & 0xff] ^ rk[ 7];
|
||||
/* round 2: */
|
||||
s0 = AES_Te0[t0 >> 24] ^ AES_Te1[(t1 >> 16) & 0xff] ^ AES_Te2[(t2 >> 8) & 0xff] ^ AES_Te3[t3 & 0xff] ^ rk[ 8];
|
||||
s1 = AES_Te0[t1 >> 24] ^ AES_Te1[(t2 >> 16) & 0xff] ^ AES_Te2[(t3 >> 8) & 0xff] ^ AES_Te3[t0 & 0xff] ^ rk[ 9];
|
||||
s2 = AES_Te0[t2 >> 24] ^ AES_Te1[(t3 >> 16) & 0xff] ^ AES_Te2[(t0 >> 8) & 0xff] ^ AES_Te3[t1 & 0xff] ^ rk[10];
|
||||
s3 = AES_Te0[t3 >> 24] ^ AES_Te1[(t0 >> 16) & 0xff] ^ AES_Te2[(t1 >> 8) & 0xff] ^ AES_Te3[t2 & 0xff] ^ rk[11];
|
||||
/* round 3: */
|
||||
t0 = AES_Te0[s0 >> 24] ^ AES_Te1[(s1 >> 16) & 0xff] ^ AES_Te2[(s2 >> 8) & 0xff] ^ AES_Te3[s3 & 0xff] ^ rk[12];
|
||||
t1 = AES_Te0[s1 >> 24] ^ AES_Te1[(s2 >> 16) & 0xff] ^ AES_Te2[(s3 >> 8) & 0xff] ^ AES_Te3[s0 & 0xff] ^ rk[13];
|
||||
t2 = AES_Te0[s2 >> 24] ^ AES_Te1[(s3 >> 16) & 0xff] ^ AES_Te2[(s0 >> 8) & 0xff] ^ AES_Te3[s1 & 0xff] ^ rk[14];
|
||||
t3 = AES_Te0[s3 >> 24] ^ AES_Te1[(s0 >> 16) & 0xff] ^ AES_Te2[(s1 >> 8) & 0xff] ^ AES_Te3[s2 & 0xff] ^ rk[15];
|
||||
/* round 4: */
|
||||
s0 = AES_Te0[t0 >> 24] ^ AES_Te1[(t1 >> 16) & 0xff] ^ AES_Te2[(t2 >> 8) & 0xff] ^ AES_Te3[t3 & 0xff] ^ rk[16];
|
||||
s1 = AES_Te0[t1 >> 24] ^ AES_Te1[(t2 >> 16) & 0xff] ^ AES_Te2[(t3 >> 8) & 0xff] ^ AES_Te3[t0 & 0xff] ^ rk[17];
|
||||
s2 = AES_Te0[t2 >> 24] ^ AES_Te1[(t3 >> 16) & 0xff] ^ AES_Te2[(t0 >> 8) & 0xff] ^ AES_Te3[t1 & 0xff] ^ rk[18];
|
||||
s3 = AES_Te0[t3 >> 24] ^ AES_Te1[(t0 >> 16) & 0xff] ^ AES_Te2[(t1 >> 8) & 0xff] ^ AES_Te3[t2 & 0xff] ^ rk[19];
|
||||
/* round 5: */
|
||||
t0 = AES_Te0[s0 >> 24] ^ AES_Te1[(s1 >> 16) & 0xff] ^ AES_Te2[(s2 >> 8) & 0xff] ^ AES_Te3[s3 & 0xff] ^ rk[20];
|
||||
t1 = AES_Te0[s1 >> 24] ^ AES_Te1[(s2 >> 16) & 0xff] ^ AES_Te2[(s3 >> 8) & 0xff] ^ AES_Te3[s0 & 0xff] ^ rk[21];
|
||||
t2 = AES_Te0[s2 >> 24] ^ AES_Te1[(s3 >> 16) & 0xff] ^ AES_Te2[(s0 >> 8) & 0xff] ^ AES_Te3[s1 & 0xff] ^ rk[22];
|
||||
t3 = AES_Te0[s3 >> 24] ^ AES_Te1[(s0 >> 16) & 0xff] ^ AES_Te2[(s1 >> 8) & 0xff] ^ AES_Te3[s2 & 0xff] ^ rk[23];
|
||||
/* round 6: */
|
||||
s0 = AES_Te0[t0 >> 24] ^ AES_Te1[(t1 >> 16) & 0xff] ^ AES_Te2[(t2 >> 8) & 0xff] ^ AES_Te3[t3 & 0xff] ^ rk[24];
|
||||
s1 = AES_Te0[t1 >> 24] ^ AES_Te1[(t2 >> 16) & 0xff] ^ AES_Te2[(t3 >> 8) & 0xff] ^ AES_Te3[t0 & 0xff] ^ rk[25];
|
||||
s2 = AES_Te0[t2 >> 24] ^ AES_Te1[(t3 >> 16) & 0xff] ^ AES_Te2[(t0 >> 8) & 0xff] ^ AES_Te3[t1 & 0xff] ^ rk[26];
|
||||
s3 = AES_Te0[t3 >> 24] ^ AES_Te1[(t0 >> 16) & 0xff] ^ AES_Te2[(t1 >> 8) & 0xff] ^ AES_Te3[t2 & 0xff] ^ rk[27];
|
||||
/* round 7: */
|
||||
t0 = AES_Te0[s0 >> 24] ^ AES_Te1[(s1 >> 16) & 0xff] ^ AES_Te2[(s2 >> 8) & 0xff] ^ AES_Te3[s3 & 0xff] ^ rk[28];
|
||||
t1 = AES_Te0[s1 >> 24] ^ AES_Te1[(s2 >> 16) & 0xff] ^ AES_Te2[(s3 >> 8) & 0xff] ^ AES_Te3[s0 & 0xff] ^ rk[29];
|
||||
t2 = AES_Te0[s2 >> 24] ^ AES_Te1[(s3 >> 16) & 0xff] ^ AES_Te2[(s0 >> 8) & 0xff] ^ AES_Te3[s1 & 0xff] ^ rk[30];
|
||||
t3 = AES_Te0[s3 >> 24] ^ AES_Te1[(s0 >> 16) & 0xff] ^ AES_Te2[(s1 >> 8) & 0xff] ^ AES_Te3[s2 & 0xff] ^ rk[31];
|
||||
/* round 8: */
|
||||
s0 = AES_Te0[t0 >> 24] ^ AES_Te1[(t1 >> 16) & 0xff] ^ AES_Te2[(t2 >> 8) & 0xff] ^ AES_Te3[t3 & 0xff] ^ rk[32];
|
||||
s1 = AES_Te0[t1 >> 24] ^ AES_Te1[(t2 >> 16) & 0xff] ^ AES_Te2[(t3 >> 8) & 0xff] ^ AES_Te3[t0 & 0xff] ^ rk[33];
|
||||
s2 = AES_Te0[t2 >> 24] ^ AES_Te1[(t3 >> 16) & 0xff] ^ AES_Te2[(t0 >> 8) & 0xff] ^ AES_Te3[t1 & 0xff] ^ rk[34];
|
||||
s3 = AES_Te0[t3 >> 24] ^ AES_Te1[(t0 >> 16) & 0xff] ^ AES_Te2[(t1 >> 8) & 0xff] ^ AES_Te3[t2 & 0xff] ^ rk[35];
|
||||
/* round 9: */
|
||||
t0 = AES_Te0[s0 >> 24] ^ AES_Te1[(s1 >> 16) & 0xff] ^ AES_Te2[(s2 >> 8) & 0xff] ^ AES_Te3[s3 & 0xff] ^ rk[36];
|
||||
t1 = AES_Te0[s1 >> 24] ^ AES_Te1[(s2 >> 16) & 0xff] ^ AES_Te2[(s3 >> 8) & 0xff] ^ AES_Te3[s0 & 0xff] ^ rk[37];
|
||||
t2 = AES_Te0[s2 >> 24] ^ AES_Te1[(s3 >> 16) & 0xff] ^ AES_Te2[(s0 >> 8) & 0xff] ^ AES_Te3[s1 & 0xff] ^ rk[38];
|
||||
t3 = AES_Te0[s3 >> 24] ^ AES_Te1[(s0 >> 16) & 0xff] ^ AES_Te2[(s1 >> 8) & 0xff] ^ AES_Te3[s2 & 0xff] ^ rk[39];
|
||||
if (key->rounds > 10) {
|
||||
/* round 10: */
|
||||
s0 = AES_Te0[t0 >> 24] ^ AES_Te1[(t1 >> 16) & 0xff] ^ AES_Te2[(t2 >> 8) & 0xff] ^ AES_Te3[t3 & 0xff] ^ rk[40];
|
||||
s1 = AES_Te0[t1 >> 24] ^ AES_Te1[(t2 >> 16) & 0xff] ^ AES_Te2[(t3 >> 8) & 0xff] ^ AES_Te3[t0 & 0xff] ^ rk[41];
|
||||
s2 = AES_Te0[t2 >> 24] ^ AES_Te1[(t3 >> 16) & 0xff] ^ AES_Te2[(t0 >> 8) & 0xff] ^ AES_Te3[t1 & 0xff] ^ rk[42];
|
||||
s3 = AES_Te0[t3 >> 24] ^ AES_Te1[(t0 >> 16) & 0xff] ^ AES_Te2[(t1 >> 8) & 0xff] ^ AES_Te3[t2 & 0xff] ^ rk[43];
|
||||
/* round 11: */
|
||||
t0 = AES_Te0[s0 >> 24] ^ AES_Te1[(s1 >> 16) & 0xff] ^ AES_Te2[(s2 >> 8) & 0xff] ^ AES_Te3[s3 & 0xff] ^ rk[44];
|
||||
t1 = AES_Te0[s1 >> 24] ^ AES_Te1[(s2 >> 16) & 0xff] ^ AES_Te2[(s3 >> 8) & 0xff] ^ AES_Te3[s0 & 0xff] ^ rk[45];
|
||||
t2 = AES_Te0[s2 >> 24] ^ AES_Te1[(s3 >> 16) & 0xff] ^ AES_Te2[(s0 >> 8) & 0xff] ^ AES_Te3[s1 & 0xff] ^ rk[46];
|
||||
t3 = AES_Te0[s3 >> 24] ^ AES_Te1[(s0 >> 16) & 0xff] ^ AES_Te2[(s1 >> 8) & 0xff] ^ AES_Te3[s2 & 0xff] ^ rk[47];
|
||||
if (key->rounds > 12) {
|
||||
/* round 12: */
|
||||
s0 = AES_Te0[t0 >> 24] ^ AES_Te1[(t1 >> 16) & 0xff] ^ AES_Te2[(t2 >> 8) & 0xff] ^ AES_Te3[t3 & 0xff] ^ rk[48];
|
||||
s1 = AES_Te0[t1 >> 24] ^ AES_Te1[(t2 >> 16) & 0xff] ^ AES_Te2[(t3 >> 8) & 0xff] ^ AES_Te3[t0 & 0xff] ^ rk[49];
|
||||
s2 = AES_Te0[t2 >> 24] ^ AES_Te1[(t3 >> 16) & 0xff] ^ AES_Te2[(t0 >> 8) & 0xff] ^ AES_Te3[t1 & 0xff] ^ rk[50];
|
||||
s3 = AES_Te0[t3 >> 24] ^ AES_Te1[(t0 >> 16) & 0xff] ^ AES_Te2[(t1 >> 8) & 0xff] ^ AES_Te3[t2 & 0xff] ^ rk[51];
|
||||
/* round 13: */
|
||||
t0 = AES_Te0[s0 >> 24] ^ AES_Te1[(s1 >> 16) & 0xff] ^ AES_Te2[(s2 >> 8) & 0xff] ^ AES_Te3[s3 & 0xff] ^ rk[52];
|
||||
t1 = AES_Te0[s1 >> 24] ^ AES_Te1[(s2 >> 16) & 0xff] ^ AES_Te2[(s3 >> 8) & 0xff] ^ AES_Te3[s0 & 0xff] ^ rk[53];
|
||||
t2 = AES_Te0[s2 >> 24] ^ AES_Te1[(s3 >> 16) & 0xff] ^ AES_Te2[(s0 >> 8) & 0xff] ^ AES_Te3[s1 & 0xff] ^ rk[54];
|
||||
t3 = AES_Te0[s3 >> 24] ^ AES_Te1[(s0 >> 16) & 0xff] ^ AES_Te2[(s1 >> 8) & 0xff] ^ AES_Te3[s2 & 0xff] ^ rk[55];
|
||||
}
|
||||
}
|
||||
rk += key->rounds << 2;
|
||||
#else /* !FULL_UNROLL */
|
||||
/*
|
||||
* Nr - 1 full rounds:
|
||||
*/
|
||||
r = key->rounds >> 1;
|
||||
for (;;) {
|
||||
t0 =
|
||||
AES_Te0[(s0 >> 24) ] ^
|
||||
AES_Te1[(s1 >> 16) & 0xff] ^
|
||||
AES_Te2[(s2 >> 8) & 0xff] ^
|
||||
AES_Te3[(s3 ) & 0xff] ^
|
||||
rk[4];
|
||||
t1 =
|
||||
AES_Te0[(s1 >> 24) ] ^
|
||||
AES_Te1[(s2 >> 16) & 0xff] ^
|
||||
AES_Te2[(s3 >> 8) & 0xff] ^
|
||||
AES_Te3[(s0 ) & 0xff] ^
|
||||
rk[5];
|
||||
t2 =
|
||||
AES_Te0[(s2 >> 24) ] ^
|
||||
AES_Te1[(s3 >> 16) & 0xff] ^
|
||||
AES_Te2[(s0 >> 8) & 0xff] ^
|
||||
AES_Te3[(s1 ) & 0xff] ^
|
||||
rk[6];
|
||||
t3 =
|
||||
AES_Te0[(s3 >> 24) ] ^
|
||||
AES_Te1[(s0 >> 16) & 0xff] ^
|
||||
AES_Te2[(s1 >> 8) & 0xff] ^
|
||||
AES_Te3[(s2 ) & 0xff] ^
|
||||
rk[7];
|
||||
|
||||
rk += 8;
|
||||
if (--r == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
s0 =
|
||||
AES_Te0[(t0 >> 24) ] ^
|
||||
AES_Te1[(t1 >> 16) & 0xff] ^
|
||||
AES_Te2[(t2 >> 8) & 0xff] ^
|
||||
AES_Te3[(t3 ) & 0xff] ^
|
||||
rk[0];
|
||||
s1 =
|
||||
AES_Te0[(t1 >> 24) ] ^
|
||||
AES_Te1[(t2 >> 16) & 0xff] ^
|
||||
AES_Te2[(t3 >> 8) & 0xff] ^
|
||||
AES_Te3[(t0 ) & 0xff] ^
|
||||
rk[1];
|
||||
s2 =
|
||||
AES_Te0[(t2 >> 24) ] ^
|
||||
AES_Te1[(t3 >> 16) & 0xff] ^
|
||||
AES_Te2[(t0 >> 8) & 0xff] ^
|
||||
AES_Te3[(t1 ) & 0xff] ^
|
||||
rk[2];
|
||||
s3 =
|
||||
AES_Te0[(t3 >> 24) ] ^
|
||||
AES_Te1[(t0 >> 16) & 0xff] ^
|
||||
AES_Te2[(t1 >> 8) & 0xff] ^
|
||||
AES_Te3[(t2 ) & 0xff] ^
|
||||
rk[3];
|
||||
}
|
||||
#endif /* ?FULL_UNROLL */
|
||||
/*
|
||||
* apply last round and
|
||||
* map cipher state to byte array block:
|
||||
*/
|
||||
s0 =
|
||||
(AES_Te4[(t0 >> 24) ] & 0xff000000) ^
|
||||
(AES_Te4[(t1 >> 16) & 0xff] & 0x00ff0000) ^
|
||||
(AES_Te4[(t2 >> 8) & 0xff] & 0x0000ff00) ^
|
||||
(AES_Te4[(t3 ) & 0xff] & 0x000000ff) ^
|
||||
rk[0];
|
||||
PUTU32(out , s0);
|
||||
s1 =
|
||||
(AES_Te4[(t1 >> 24) ] & 0xff000000) ^
|
||||
(AES_Te4[(t2 >> 16) & 0xff] & 0x00ff0000) ^
|
||||
(AES_Te4[(t3 >> 8) & 0xff] & 0x0000ff00) ^
|
||||
(AES_Te4[(t0 ) & 0xff] & 0x000000ff) ^
|
||||
rk[1];
|
||||
PUTU32(out + 4, s1);
|
||||
s2 =
|
||||
(AES_Te4[(t2 >> 24) ] & 0xff000000) ^
|
||||
(AES_Te4[(t3 >> 16) & 0xff] & 0x00ff0000) ^
|
||||
(AES_Te4[(t0 >> 8) & 0xff] & 0x0000ff00) ^
|
||||
(AES_Te4[(t1 ) & 0xff] & 0x000000ff) ^
|
||||
rk[2];
|
||||
PUTU32(out + 8, s2);
|
||||
s3 =
|
||||
(AES_Te4[(t3 >> 24) ] & 0xff000000) ^
|
||||
(AES_Te4[(t0 >> 16) & 0xff] & 0x00ff0000) ^
|
||||
(AES_Te4[(t1 >> 8) & 0xff] & 0x0000ff00) ^
|
||||
(AES_Te4[(t2 ) & 0xff] & 0x000000ff) ^
|
||||
rk[3];
|
||||
PUTU32(out + 12, s3);
|
||||
}
|
||||
|
||||
/*
|
||||
* Decrypt a single block
|
||||
* in and out can overlap
|
||||
*/
|
||||
void AES_decrypt(const unsigned char *in, unsigned char *out,
|
||||
const AES_KEY *key) {
|
||||
|
||||
const u32 *rk;
|
||||
u32 s0, s1, s2, s3, t0, t1, t2, t3;
|
||||
#ifndef FULL_UNROLL
|
||||
int r;
|
||||
#endif /* ?FULL_UNROLL */
|
||||
|
||||
assert(in && out && key);
|
||||
rk = key->rd_key;
|
||||
|
||||
/*
|
||||
* map byte array block to cipher state
|
||||
* and add initial round key:
|
||||
*/
|
||||
s0 = GETU32(in ) ^ rk[0];
|
||||
s1 = GETU32(in + 4) ^ rk[1];
|
||||
s2 = GETU32(in + 8) ^ rk[2];
|
||||
s3 = GETU32(in + 12) ^ rk[3];
|
||||
#ifdef FULL_UNROLL
|
||||
/* round 1: */
|
||||
t0 = AES_Td0[s0 >> 24] ^ AES_Td1[(s3 >> 16) & 0xff] ^ AES_Td2[(s2 >> 8) & 0xff] ^ AES_Td3[s1 & 0xff] ^ rk[ 4];
|
||||
t1 = AES_Td0[s1 >> 24] ^ AES_Td1[(s0 >> 16) & 0xff] ^ AES_Td2[(s3 >> 8) & 0xff] ^ AES_Td3[s2 & 0xff] ^ rk[ 5];
|
||||
t2 = AES_Td0[s2 >> 24] ^ AES_Td1[(s1 >> 16) & 0xff] ^ AES_Td2[(s0 >> 8) & 0xff] ^ AES_Td3[s3 & 0xff] ^ rk[ 6];
|
||||
t3 = AES_Td0[s3 >> 24] ^ AES_Td1[(s2 >> 16) & 0xff] ^ AES_Td2[(s1 >> 8) & 0xff] ^ AES_Td3[s0 & 0xff] ^ rk[ 7];
|
||||
/* round 2: */
|
||||
s0 = AES_Td0[t0 >> 24] ^ AES_Td1[(t3 >> 16) & 0xff] ^ AES_Td2[(t2 >> 8) & 0xff] ^ AES_Td3[t1 & 0xff] ^ rk[ 8];
|
||||
s1 = AES_Td0[t1 >> 24] ^ AES_Td1[(t0 >> 16) & 0xff] ^ AES_Td2[(t3 >> 8) & 0xff] ^ AES_Td3[t2 & 0xff] ^ rk[ 9];
|
||||
s2 = AES_Td0[t2 >> 24] ^ AES_Td1[(t1 >> 16) & 0xff] ^ AES_Td2[(t0 >> 8) & 0xff] ^ AES_Td3[t3 & 0xff] ^ rk[10];
|
||||
s3 = AES_Td0[t3 >> 24] ^ AES_Td1[(t2 >> 16) & 0xff] ^ AES_Td2[(t1 >> 8) & 0xff] ^ AES_Td3[t0 & 0xff] ^ rk[11];
|
||||
/* round 3: */
|
||||
t0 = AES_Td0[s0 >> 24] ^ AES_Td1[(s3 >> 16) & 0xff] ^ AES_Td2[(s2 >> 8) & 0xff] ^ AES_Td3[s1 & 0xff] ^ rk[12];
|
||||
t1 = AES_Td0[s1 >> 24] ^ AES_Td1[(s0 >> 16) & 0xff] ^ AES_Td2[(s3 >> 8) & 0xff] ^ AES_Td3[s2 & 0xff] ^ rk[13];
|
||||
t2 = AES_Td0[s2 >> 24] ^ AES_Td1[(s1 >> 16) & 0xff] ^ AES_Td2[(s0 >> 8) & 0xff] ^ AES_Td3[s3 & 0xff] ^ rk[14];
|
||||
t3 = AES_Td0[s3 >> 24] ^ AES_Td1[(s2 >> 16) & 0xff] ^ AES_Td2[(s1 >> 8) & 0xff] ^ AES_Td3[s0 & 0xff] ^ rk[15];
|
||||
/* round 4: */
|
||||
s0 = AES_Td0[t0 >> 24] ^ AES_Td1[(t3 >> 16) & 0xff] ^ AES_Td2[(t2 >> 8) & 0xff] ^ AES_Td3[t1 & 0xff] ^ rk[16];
|
||||
s1 = AES_Td0[t1 >> 24] ^ AES_Td1[(t0 >> 16) & 0xff] ^ AES_Td2[(t3 >> 8) & 0xff] ^ AES_Td3[t2 & 0xff] ^ rk[17];
|
||||
s2 = AES_Td0[t2 >> 24] ^ AES_Td1[(t1 >> 16) & 0xff] ^ AES_Td2[(t0 >> 8) & 0xff] ^ AES_Td3[t3 & 0xff] ^ rk[18];
|
||||
s3 = AES_Td0[t3 >> 24] ^ AES_Td1[(t2 >> 16) & 0xff] ^ AES_Td2[(t1 >> 8) & 0xff] ^ AES_Td3[t0 & 0xff] ^ rk[19];
|
||||
/* round 5: */
|
||||
t0 = AES_Td0[s0 >> 24] ^ AES_Td1[(s3 >> 16) & 0xff] ^ AES_Td2[(s2 >> 8) & 0xff] ^ AES_Td3[s1 & 0xff] ^ rk[20];
|
||||
t1 = AES_Td0[s1 >> 24] ^ AES_Td1[(s0 >> 16) & 0xff] ^ AES_Td2[(s3 >> 8) & 0xff] ^ AES_Td3[s2 & 0xff] ^ rk[21];
|
||||
t2 = AES_Td0[s2 >> 24] ^ AES_Td1[(s1 >> 16) & 0xff] ^ AES_Td2[(s0 >> 8) & 0xff] ^ AES_Td3[s3 & 0xff] ^ rk[22];
|
||||
t3 = AES_Td0[s3 >> 24] ^ AES_Td1[(s2 >> 16) & 0xff] ^ AES_Td2[(s1 >> 8) & 0xff] ^ AES_Td3[s0 & 0xff] ^ rk[23];
|
||||
/* round 6: */
|
||||
s0 = AES_Td0[t0 >> 24] ^ AES_Td1[(t3 >> 16) & 0xff] ^ AES_Td2[(t2 >> 8) & 0xff] ^ AES_Td3[t1 & 0xff] ^ rk[24];
|
||||
s1 = AES_Td0[t1 >> 24] ^ AES_Td1[(t0 >> 16) & 0xff] ^ AES_Td2[(t3 >> 8) & 0xff] ^ AES_Td3[t2 & 0xff] ^ rk[25];
|
||||
s2 = AES_Td0[t2 >> 24] ^ AES_Td1[(t1 >> 16) & 0xff] ^ AES_Td2[(t0 >> 8) & 0xff] ^ AES_Td3[t3 & 0xff] ^ rk[26];
|
||||
s3 = AES_Td0[t3 >> 24] ^ AES_Td1[(t2 >> 16) & 0xff] ^ AES_Td2[(t1 >> 8) & 0xff] ^ AES_Td3[t0 & 0xff] ^ rk[27];
|
||||
/* round 7: */
|
||||
t0 = AES_Td0[s0 >> 24] ^ AES_Td1[(s3 >> 16) & 0xff] ^ AES_Td2[(s2 >> 8) & 0xff] ^ AES_Td3[s1 & 0xff] ^ rk[28];
|
||||
t1 = AES_Td0[s1 >> 24] ^ AES_Td1[(s0 >> 16) & 0xff] ^ AES_Td2[(s3 >> 8) & 0xff] ^ AES_Td3[s2 & 0xff] ^ rk[29];
|
||||
t2 = AES_Td0[s2 >> 24] ^ AES_Td1[(s1 >> 16) & 0xff] ^ AES_Td2[(s0 >> 8) & 0xff] ^ AES_Td3[s3 & 0xff] ^ rk[30];
|
||||
t3 = AES_Td0[s3 >> 24] ^ AES_Td1[(s2 >> 16) & 0xff] ^ AES_Td2[(s1 >> 8) & 0xff] ^ AES_Td3[s0 & 0xff] ^ rk[31];
|
||||
/* round 8: */
|
||||
s0 = AES_Td0[t0 >> 24] ^ AES_Td1[(t3 >> 16) & 0xff] ^ AES_Td2[(t2 >> 8) & 0xff] ^ AES_Td3[t1 & 0xff] ^ rk[32];
|
||||
s1 = AES_Td0[t1 >> 24] ^ AES_Td1[(t0 >> 16) & 0xff] ^ AES_Td2[(t3 >> 8) & 0xff] ^ AES_Td3[t2 & 0xff] ^ rk[33];
|
||||
s2 = AES_Td0[t2 >> 24] ^ AES_Td1[(t1 >> 16) & 0xff] ^ AES_Td2[(t0 >> 8) & 0xff] ^ AES_Td3[t3 & 0xff] ^ rk[34];
|
||||
s3 = AES_Td0[t3 >> 24] ^ AES_Td1[(t2 >> 16) & 0xff] ^ AES_Td2[(t1 >> 8) & 0xff] ^ AES_Td3[t0 & 0xff] ^ rk[35];
|
||||
/* round 9: */
|
||||
t0 = AES_Td0[s0 >> 24] ^ AES_Td1[(s3 >> 16) & 0xff] ^ AES_Td2[(s2 >> 8) & 0xff] ^ AES_Td3[s1 & 0xff] ^ rk[36];
|
||||
t1 = AES_Td0[s1 >> 24] ^ AES_Td1[(s0 >> 16) & 0xff] ^ AES_Td2[(s3 >> 8) & 0xff] ^ AES_Td3[s2 & 0xff] ^ rk[37];
|
||||
t2 = AES_Td0[s2 >> 24] ^ AES_Td1[(s1 >> 16) & 0xff] ^ AES_Td2[(s0 >> 8) & 0xff] ^ AES_Td3[s3 & 0xff] ^ rk[38];
|
||||
t3 = AES_Td0[s3 >> 24] ^ AES_Td1[(s2 >> 16) & 0xff] ^ AES_Td2[(s1 >> 8) & 0xff] ^ AES_Td3[s0 & 0xff] ^ rk[39];
|
||||
if (key->rounds > 10) {
|
||||
/* round 10: */
|
||||
s0 = AES_Td0[t0 >> 24] ^ AES_Td1[(t3 >> 16) & 0xff] ^ AES_Td2[(t2 >> 8) & 0xff] ^ AES_Td3[t1 & 0xff] ^ rk[40];
|
||||
s1 = AES_Td0[t1 >> 24] ^ AES_Td1[(t0 >> 16) & 0xff] ^ AES_Td2[(t3 >> 8) & 0xff] ^ AES_Td3[t2 & 0xff] ^ rk[41];
|
||||
s2 = AES_Td0[t2 >> 24] ^ AES_Td1[(t1 >> 16) & 0xff] ^ AES_Td2[(t0 >> 8) & 0xff] ^ AES_Td3[t3 & 0xff] ^ rk[42];
|
||||
s3 = AES_Td0[t3 >> 24] ^ AES_Td1[(t2 >> 16) & 0xff] ^ AES_Td2[(t1 >> 8) & 0xff] ^ AES_Td3[t0 & 0xff] ^ rk[43];
|
||||
/* round 11: */
|
||||
t0 = AES_Td0[s0 >> 24] ^ AES_Td1[(s3 >> 16) & 0xff] ^ AES_Td2[(s2 >> 8) & 0xff] ^ AES_Td3[s1 & 0xff] ^ rk[44];
|
||||
t1 = AES_Td0[s1 >> 24] ^ AES_Td1[(s0 >> 16) & 0xff] ^ AES_Td2[(s3 >> 8) & 0xff] ^ AES_Td3[s2 & 0xff] ^ rk[45];
|
||||
t2 = AES_Td0[s2 >> 24] ^ AES_Td1[(s1 >> 16) & 0xff] ^ AES_Td2[(s0 >> 8) & 0xff] ^ AES_Td3[s3 & 0xff] ^ rk[46];
|
||||
t3 = AES_Td0[s3 >> 24] ^ AES_Td1[(s2 >> 16) & 0xff] ^ AES_Td2[(s1 >> 8) & 0xff] ^ AES_Td3[s0 & 0xff] ^ rk[47];
|
||||
if (key->rounds > 12) {
|
||||
/* round 12: */
|
||||
s0 = AES_Td0[t0 >> 24] ^ AES_Td1[(t3 >> 16) & 0xff] ^ AES_Td2[(t2 >> 8) & 0xff] ^ AES_Td3[t1 & 0xff] ^ rk[48];
|
||||
s1 = AES_Td0[t1 >> 24] ^ AES_Td1[(t0 >> 16) & 0xff] ^ AES_Td2[(t3 >> 8) & 0xff] ^ AES_Td3[t2 & 0xff] ^ rk[49];
|
||||
s2 = AES_Td0[t2 >> 24] ^ AES_Td1[(t1 >> 16) & 0xff] ^ AES_Td2[(t0 >> 8) & 0xff] ^ AES_Td3[t3 & 0xff] ^ rk[50];
|
||||
s3 = AES_Td0[t3 >> 24] ^ AES_Td1[(t2 >> 16) & 0xff] ^ AES_Td2[(t1 >> 8) & 0xff] ^ AES_Td3[t0 & 0xff] ^ rk[51];
|
||||
/* round 13: */
|
||||
t0 = AES_Td0[s0 >> 24] ^ AES_Td1[(s3 >> 16) & 0xff] ^ AES_Td2[(s2 >> 8) & 0xff] ^ AES_Td3[s1 & 0xff] ^ rk[52];
|
||||
t1 = AES_Td0[s1 >> 24] ^ AES_Td1[(s0 >> 16) & 0xff] ^ AES_Td2[(s3 >> 8) & 0xff] ^ AES_Td3[s2 & 0xff] ^ rk[53];
|
||||
t2 = AES_Td0[s2 >> 24] ^ AES_Td1[(s1 >> 16) & 0xff] ^ AES_Td2[(s0 >> 8) & 0xff] ^ AES_Td3[s3 & 0xff] ^ rk[54];
|
||||
t3 = AES_Td0[s3 >> 24] ^ AES_Td1[(s2 >> 16) & 0xff] ^ AES_Td2[(s1 >> 8) & 0xff] ^ AES_Td3[s0 & 0xff] ^ rk[55];
|
||||
}
|
||||
}
|
||||
rk += key->rounds << 2;
|
||||
#else /* !FULL_UNROLL */
|
||||
/*
|
||||
* Nr - 1 full rounds:
|
||||
*/
|
||||
r = key->rounds >> 1;
|
||||
for (;;) {
|
||||
t0 =
|
||||
AES_Td0[(s0 >> 24) ] ^
|
||||
AES_Td1[(s3 >> 16) & 0xff] ^
|
||||
AES_Td2[(s2 >> 8) & 0xff] ^
|
||||
AES_Td3[(s1 ) & 0xff] ^
|
||||
rk[4];
|
||||
t1 =
|
||||
AES_Td0[(s1 >> 24) ] ^
|
||||
AES_Td1[(s0 >> 16) & 0xff] ^
|
||||
AES_Td2[(s3 >> 8) & 0xff] ^
|
||||
AES_Td3[(s2 ) & 0xff] ^
|
||||
rk[5];
|
||||
t2 =
|
||||
AES_Td0[(s2 >> 24) ] ^
|
||||
AES_Td1[(s1 >> 16) & 0xff] ^
|
||||
AES_Td2[(s0 >> 8) & 0xff] ^
|
||||
AES_Td3[(s3 ) & 0xff] ^
|
||||
rk[6];
|
||||
t3 =
|
||||
AES_Td0[(s3 >> 24) ] ^
|
||||
AES_Td1[(s2 >> 16) & 0xff] ^
|
||||
AES_Td2[(s1 >> 8) & 0xff] ^
|
||||
AES_Td3[(s0 ) & 0xff] ^
|
||||
rk[7];
|
||||
|
||||
rk += 8;
|
||||
if (--r == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
s0 =
|
||||
AES_Td0[(t0 >> 24) ] ^
|
||||
AES_Td1[(t3 >> 16) & 0xff] ^
|
||||
AES_Td2[(t2 >> 8) & 0xff] ^
|
||||
AES_Td3[(t1 ) & 0xff] ^
|
||||
rk[0];
|
||||
s1 =
|
||||
AES_Td0[(t1 >> 24) ] ^
|
||||
AES_Td1[(t0 >> 16) & 0xff] ^
|
||||
AES_Td2[(t3 >> 8) & 0xff] ^
|
||||
AES_Td3[(t2 ) & 0xff] ^
|
||||
rk[1];
|
||||
s2 =
|
||||
AES_Td0[(t2 >> 24) ] ^
|
||||
AES_Td1[(t1 >> 16) & 0xff] ^
|
||||
AES_Td2[(t0 >> 8) & 0xff] ^
|
||||
AES_Td3[(t3 ) & 0xff] ^
|
||||
rk[2];
|
||||
s3 =
|
||||
AES_Td0[(t3 >> 24) ] ^
|
||||
AES_Td1[(t2 >> 16) & 0xff] ^
|
||||
AES_Td2[(t1 >> 8) & 0xff] ^
|
||||
AES_Td3[(t0 ) & 0xff] ^
|
||||
rk[3];
|
||||
}
|
||||
#endif /* ?FULL_UNROLL */
|
||||
/*
|
||||
* apply last round and
|
||||
* map cipher state to byte array block:
|
||||
*/
|
||||
s0 =
|
||||
(AES_Td4[(t0 >> 24) ] & 0xff000000) ^
|
||||
(AES_Td4[(t3 >> 16) & 0xff] & 0x00ff0000) ^
|
||||
(AES_Td4[(t2 >> 8) & 0xff] & 0x0000ff00) ^
|
||||
(AES_Td4[(t1 ) & 0xff] & 0x000000ff) ^
|
||||
rk[0];
|
||||
PUTU32(out , s0);
|
||||
s1 =
|
||||
(AES_Td4[(t1 >> 24) ] & 0xff000000) ^
|
||||
(AES_Td4[(t0 >> 16) & 0xff] & 0x00ff0000) ^
|
||||
(AES_Td4[(t3 >> 8) & 0xff] & 0x0000ff00) ^
|
||||
(AES_Td4[(t2 ) & 0xff] & 0x000000ff) ^
|
||||
rk[1];
|
||||
PUTU32(out + 4, s1);
|
||||
s2 =
|
||||
(AES_Td4[(t2 >> 24) ] & 0xff000000) ^
|
||||
(AES_Td4[(t1 >> 16) & 0xff] & 0x00ff0000) ^
|
||||
(AES_Td4[(t0 >> 8) & 0xff] & 0x0000ff00) ^
|
||||
(AES_Td4[(t3 ) & 0xff] & 0x000000ff) ^
|
||||
rk[2];
|
||||
PUTU32(out + 8, s2);
|
||||
s3 =
|
||||
(AES_Td4[(t3 >> 24) ] & 0xff000000) ^
|
||||
(AES_Td4[(t2 >> 16) & 0xff] & 0x00ff0000) ^
|
||||
(AES_Td4[(t1 >> 8) & 0xff] & 0x0000ff00) ^
|
||||
(AES_Td4[(t0 ) & 0xff] & 0x000000ff) ^
|
||||
rk[3];
|
||||
PUTU32(out + 12, s3);
|
||||
}
|
||||
|
||||
#endif /* AES_ASM */
|
||||
|
||||
void AES_cbc_encrypt(const unsigned char *in, unsigned char *out,
|
||||
const unsigned long length, const AES_KEY *key,
|
||||
unsigned char *ivec, const int enc)
|
||||
{
|
||||
|
||||
unsigned long n;
|
||||
unsigned long len = length;
|
||||
unsigned char tmp[AES_BLOCK_SIZE];
|
||||
|
||||
assert(in && out && key && ivec);
|
||||
|
||||
if (enc) {
|
||||
while (len >= AES_BLOCK_SIZE) {
|
||||
for(n=0; n < AES_BLOCK_SIZE; ++n)
|
||||
tmp[n] = in[n] ^ ivec[n];
|
||||
AES_encrypt(tmp, out, key);
|
||||
memcpy(ivec, out, AES_BLOCK_SIZE);
|
||||
len -= AES_BLOCK_SIZE;
|
||||
in += AES_BLOCK_SIZE;
|
||||
out += AES_BLOCK_SIZE;
|
||||
}
|
||||
if (len) {
|
||||
for(n=0; n < len; ++n)
|
||||
tmp[n] = in[n] ^ ivec[n];
|
||||
for(n=len; n < AES_BLOCK_SIZE; ++n)
|
||||
tmp[n] = ivec[n];
|
||||
AES_encrypt(tmp, tmp, key);
|
||||
memcpy(out, tmp, AES_BLOCK_SIZE);
|
||||
memcpy(ivec, tmp, AES_BLOCK_SIZE);
|
||||
}
|
||||
} else {
|
||||
while (len >= AES_BLOCK_SIZE) {
|
||||
memcpy(tmp, in, AES_BLOCK_SIZE);
|
||||
AES_decrypt(in, out, key);
|
||||
for(n=0; n < AES_BLOCK_SIZE; ++n)
|
||||
out[n] ^= ivec[n];
|
||||
memcpy(ivec, tmp, AES_BLOCK_SIZE);
|
||||
len -= AES_BLOCK_SIZE;
|
||||
in += AES_BLOCK_SIZE;
|
||||
out += AES_BLOCK_SIZE;
|
||||
}
|
||||
if (len) {
|
||||
memcpy(tmp, in, AES_BLOCK_SIZE);
|
||||
AES_decrypt(tmp, tmp, key);
|
||||
for(n=0; n < len; ++n)
|
||||
out[n] = tmp[n] ^ ivec[n];
|
||||
memcpy(ivec, tmp, AES_BLOCK_SIZE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -12,149 +12,6 @@
|
||||
#include "qemu/bitops.h"
|
||||
#include "qemu/bitmap.h"
|
||||
|
||||
/*
|
||||
* bitmaps provide an array of bits, implemented using an an
|
||||
* array of unsigned longs. The number of valid bits in a
|
||||
* given bitmap does _not_ need to be an exact multiple of
|
||||
* BITS_PER_LONG.
|
||||
*
|
||||
* The possible unused bits in the last, partially used word
|
||||
* of a bitmap are 'don't care'. The implementation makes
|
||||
* no particular effort to keep them zero. It ensures that
|
||||
* their value will not affect the results of any operation.
|
||||
* The bitmap operations that return Boolean (bitmap_empty,
|
||||
* for example) or scalar (bitmap_weight, for example) results
|
||||
* carefully filter out these unused bits from impacting their
|
||||
* results.
|
||||
*
|
||||
* These operations actually hold to a slightly stronger rule:
|
||||
* if you don't input any bitmaps to these ops that have some
|
||||
* unused bits set, then they won't output any set unused bits
|
||||
* in output bitmaps.
|
||||
*
|
||||
* The byte ordering of bitmaps is more natural on little
|
||||
* endian architectures.
|
||||
*/
|
||||
|
||||
int slow_bitmap_empty(const unsigned long *bitmap, long bits)
|
||||
{
|
||||
long k, lim = bits/BITS_PER_LONG;
|
||||
|
||||
for (k = 0; k < lim; ++k) {
|
||||
if (bitmap[k]) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
if (bits % BITS_PER_LONG) {
|
||||
if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
int slow_bitmap_full(const unsigned long *bitmap, long bits)
|
||||
{
|
||||
long k, lim = bits/BITS_PER_LONG;
|
||||
|
||||
for (k = 0; k < lim; ++k) {
|
||||
if (~bitmap[k]) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (bits % BITS_PER_LONG) {
|
||||
if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
int slow_bitmap_equal(const unsigned long *bitmap1,
|
||||
const unsigned long *bitmap2, long bits)
|
||||
{
|
||||
long k, lim = bits/BITS_PER_LONG;
|
||||
|
||||
for (k = 0; k < lim; ++k) {
|
||||
if (bitmap1[k] != bitmap2[k]) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (bits % BITS_PER_LONG) {
|
||||
if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
void slow_bitmap_complement(unsigned long *dst, const unsigned long *src,
|
||||
long bits)
|
||||
{
|
||||
long k, lim = bits/BITS_PER_LONG;
|
||||
|
||||
for (k = 0; k < lim; ++k) {
|
||||
dst[k] = ~src[k];
|
||||
}
|
||||
|
||||
if (bits % BITS_PER_LONG) {
|
||||
dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
|
||||
}
|
||||
}
|
||||
|
||||
int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
|
||||
const unsigned long *bitmap2, long bits)
|
||||
{
|
||||
long k;
|
||||
long nr = BITS_TO_LONGS(bits);
|
||||
unsigned long result = 0;
|
||||
|
||||
for (k = 0; k < nr; k++) {
|
||||
result |= (dst[k] = bitmap1[k] & bitmap2[k]);
|
||||
}
|
||||
return result != 0;
|
||||
}
|
||||
|
||||
void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
|
||||
const unsigned long *bitmap2, long bits)
|
||||
{
|
||||
long k;
|
||||
long nr = BITS_TO_LONGS(bits);
|
||||
|
||||
for (k = 0; k < nr; k++) {
|
||||
dst[k] = bitmap1[k] | bitmap2[k];
|
||||
}
|
||||
}
|
||||
|
||||
void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
|
||||
const unsigned long *bitmap2, long bits)
|
||||
{
|
||||
long k;
|
||||
long nr = BITS_TO_LONGS(bits);
|
||||
|
||||
for (k = 0; k < nr; k++) {
|
||||
dst[k] = bitmap1[k] ^ bitmap2[k];
|
||||
}
|
||||
}
|
||||
|
||||
int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
|
||||
const unsigned long *bitmap2, long bits)
|
||||
{
|
||||
long k;
|
||||
long nr = BITS_TO_LONGS(bits);
|
||||
unsigned long result = 0;
|
||||
|
||||
for (k = 0; k < nr; k++) {
|
||||
result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
|
||||
}
|
||||
return result != 0;
|
||||
}
|
||||
|
||||
#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG))
|
||||
|
||||
void bitmap_set(unsigned long *map, long start, long nr)
|
||||
@@ -196,61 +53,3 @@ void bitmap_clear(unsigned long *map, long start, long nr)
|
||||
*p &= ~mask_to_clear;
|
||||
}
|
||||
}
|
||||
|
||||
#define ALIGN_MASK(x,mask) (((x)+(mask))&~(mask))
|
||||
|
||||
/**
|
||||
* bitmap_find_next_zero_area - find a contiguous aligned zero area
|
||||
* @map: The address to base the search on
|
||||
* @size: The bitmap size in bits
|
||||
* @start: The bitnumber to start searching at
|
||||
* @nr: The number of zeroed bits we're looking for
|
||||
* @align_mask: Alignment mask for zero area
|
||||
*
|
||||
* The @align_mask should be one less than a power of 2; the effect is that
|
||||
* the bit offset of all zero areas this function finds is multiples of that
|
||||
* power of 2. A @align_mask of 0 means no alignment is required.
|
||||
*/
|
||||
unsigned long bitmap_find_next_zero_area(unsigned long *map,
|
||||
unsigned long size,
|
||||
unsigned long start,
|
||||
unsigned long nr,
|
||||
unsigned long align_mask)
|
||||
{
|
||||
unsigned long index, end, i;
|
||||
again:
|
||||
index = find_next_zero_bit(map, size, start);
|
||||
|
||||
/* Align allocation */
|
||||
index = ALIGN_MASK(index, align_mask);
|
||||
|
||||
end = index + nr;
|
||||
if (end > size) {
|
||||
return end;
|
||||
}
|
||||
i = find_next_bit(map, end, index);
|
||||
if (i < end) {
|
||||
start = i + 1;
|
||||
goto again;
|
||||
}
|
||||
return index;
|
||||
}
|
||||
|
||||
int slow_bitmap_intersects(const unsigned long *bitmap1,
|
||||
const unsigned long *bitmap2, long bits)
|
||||
{
|
||||
long k, lim = bits/BITS_PER_LONG;
|
||||
|
||||
for (k = 0; k < lim; ++k) {
|
||||
if (bitmap1[k] & bitmap2[k]) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
if (bits % BITS_PER_LONG) {
|
||||
if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -127,32 +127,3 @@ found_first:
|
||||
found_middle:
|
||||
return result + ctzl(~tmp);
|
||||
}
|
||||
|
||||
unsigned long find_last_bit(const unsigned long *addr, unsigned long size)
|
||||
{
|
||||
unsigned long words;
|
||||
unsigned long tmp;
|
||||
|
||||
/* Start at final word. */
|
||||
words = size / BITS_PER_LONG;
|
||||
|
||||
/* Partial final word? */
|
||||
if (size & (BITS_PER_LONG-1)) {
|
||||
tmp = (addr[words] & (~0UL >> (BITS_PER_LONG
|
||||
- (size & (BITS_PER_LONG-1)))));
|
||||
if (tmp) {
|
||||
goto found;
|
||||
}
|
||||
}
|
||||
|
||||
while (words) {
|
||||
tmp = addr[--words];
|
||||
if (tmp) {
|
||||
found:
|
||||
return words * BITS_PER_LONG + BITS_PER_LONG - 1 - clzl(tmp);
|
||||
}
|
||||
}
|
||||
|
||||
/* Not found */
|
||||
return size;
|
||||
}
|
||||
|
||||
@@ -28,13 +28,6 @@
|
||||
#include <errno.h>
|
||||
|
||||
|
||||
void strpadcpy(char *buf, int buf_size, const char *str, char pad)
|
||||
{
|
||||
int len = qemu_strnlen(str, buf_size);
|
||||
memcpy(buf, str, len);
|
||||
memset(buf + len, pad, buf_size - len);
|
||||
}
|
||||
|
||||
void pstrcpy(char *buf, int buf_size, const char *str)
|
||||
{
|
||||
int c;
|
||||
@@ -78,108 +71,11 @@ int strstart(const char *str, const char *val, const char **ptr)
|
||||
return 1;
|
||||
}
|
||||
|
||||
int stristart(const char *str, const char *val, const char **ptr)
|
||||
{
|
||||
const char *p, *q;
|
||||
p = str;
|
||||
q = val;
|
||||
while (*q != '\0') {
|
||||
if (qemu_toupper(*p) != qemu_toupper(*q))
|
||||
return 0;
|
||||
p++;
|
||||
q++;
|
||||
}
|
||||
if (ptr)
|
||||
*ptr = p;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* XXX: use host strnlen if available ? */
|
||||
int qemu_strnlen(const char *s, int max_len)
|
||||
{
|
||||
int i;
|
||||
|
||||
for(i = 0; i < max_len; i++) {
|
||||
if (s[i] == '\0') {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
char *qemu_strsep(char **input, const char *delim)
|
||||
{
|
||||
char *result = *input;
|
||||
if (result != NULL) {
|
||||
char *p;
|
||||
|
||||
for (p = result; *p != '\0'; p++) {
|
||||
if (strchr(delim, *p)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (*p == '\0') {
|
||||
*input = NULL;
|
||||
} else {
|
||||
*p = '\0';
|
||||
*input = p + 1;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
time_t mktimegm(struct tm *tm)
|
||||
{
|
||||
time_t t;
|
||||
int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
|
||||
if (m < 3) {
|
||||
m += 12;
|
||||
y--;
|
||||
}
|
||||
t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
|
||||
y / 400 - 719469);
|
||||
t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
|
||||
return t;
|
||||
}
|
||||
|
||||
int qemu_fls(int i)
|
||||
{
|
||||
return 32 - clz32(i);
|
||||
}
|
||||
|
||||
/*
|
||||
* Make sure data goes on disk, but if possible do not bother to
|
||||
* write out the inode just for timestamp updates.
|
||||
*
|
||||
* Unfortunately even in 2009 many operating systems do not support
|
||||
* fdatasync and have to fall back to fsync.
|
||||
*/
|
||||
int qemu_fdatasync(int fd)
|
||||
{
|
||||
#ifdef CONFIG_FDATASYNC
|
||||
return fdatasync(fd);
|
||||
#else
|
||||
return fsync(fd);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifndef _WIN32
|
||||
/* Sets a specific flag */
|
||||
int fcntl_setfl(int fd, int flag)
|
||||
{
|
||||
int flags;
|
||||
|
||||
flags = fcntl(fd, F_GETFL);
|
||||
if (flags == -1)
|
||||
return -errno;
|
||||
|
||||
if (fcntl(fd, F_SETFL, flags | flag) == -1)
|
||||
return -errno;
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
static int64_t suffix_mul(char suffix, int64_t unit)
|
||||
{
|
||||
switch (qemu_toupper(suffix)) {
|
||||
@@ -259,161 +155,3 @@ int64_t strtosz(const char *nptr, char **end)
|
||||
{
|
||||
return strtosz_suffix(nptr, end, STRTOSZ_DEFSUFFIX_MB);
|
||||
}
|
||||
|
||||
/**
|
||||
* parse_uint:
|
||||
*
|
||||
* @s: String to parse
|
||||
* @value: Destination for parsed integer value
|
||||
* @endptr: Destination for pointer to first character not consumed
|
||||
* @base: integer base, between 2 and 36 inclusive, or 0
|
||||
*
|
||||
* Parse unsigned integer
|
||||
*
|
||||
* Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional
|
||||
* '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits.
|
||||
*
|
||||
* If @s is null, or @base is invalid, or @s doesn't start with an
|
||||
* integer in the syntax above, set *@value to 0, *@endptr to @s, and
|
||||
* return -EINVAL.
|
||||
*
|
||||
* Set *@endptr to point right beyond the parsed integer (even if the integer
|
||||
* overflows or is negative, all digits will be parsed and *@endptr will
|
||||
* point right beyond them).
|
||||
*
|
||||
* If the integer is negative, set *@value to 0, and return -ERANGE.
|
||||
*
|
||||
* If the integer overflows unsigned long long, set *@value to
|
||||
* ULLONG_MAX, and return -ERANGE.
|
||||
*
|
||||
* Else, set *@value to the parsed integer, and return 0.
|
||||
*/
|
||||
int parse_uint(const char *s, unsigned long long *value, char **endptr,
|
||||
int base)
|
||||
{
|
||||
int r = 0;
|
||||
char *endp = (char *)s;
|
||||
unsigned long long val = 0;
|
||||
|
||||
if (!s) {
|
||||
r = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
|
||||
errno = 0;
|
||||
val = strtoull(s, &endp, base);
|
||||
if (errno) {
|
||||
r = -errno;
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (endp == s) {
|
||||
r = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* make sure we reject negative numbers: */
|
||||
while (isspace((unsigned char)*s)) {
|
||||
s++;
|
||||
}
|
||||
if (*s == '-') {
|
||||
val = 0;
|
||||
r = -ERANGE;
|
||||
goto out;
|
||||
}
|
||||
|
||||
out:
|
||||
*value = val;
|
||||
*endptr = endp;
|
||||
return r;
|
||||
}
|
||||
|
||||
/**
|
||||
* parse_uint_full:
|
||||
*
|
||||
* @s: String to parse
|
||||
* @value: Destination for parsed integer value
|
||||
* @base: integer base, between 2 and 36 inclusive, or 0
|
||||
*
|
||||
* Parse unsigned integer from entire string
|
||||
*
|
||||
* Have the same behavior of parse_uint(), but with an additional check
|
||||
* for additional data after the parsed number. If extra characters are present
|
||||
* after the parsed number, the function will return -EINVAL, and *@v will
|
||||
* be set to 0.
|
||||
*/
|
||||
int parse_uint_full(const char *s, unsigned long long *value, int base)
|
||||
{
|
||||
char *endp;
|
||||
int r;
|
||||
|
||||
r = parse_uint(s, value, &endp, base);
|
||||
if (r < 0) {
|
||||
return r;
|
||||
}
|
||||
if (*endp) {
|
||||
*value = 0;
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int qemu_parse_fd(const char *param)
|
||||
{
|
||||
long fd;
|
||||
char *endptr;
|
||||
|
||||
errno = 0;
|
||||
fd = strtol(param, &endptr, 10);
|
||||
if (param == endptr /* no conversion performed */ ||
|
||||
errno != 0 /* not representable as long; possibly others */ ||
|
||||
*endptr != '\0' /* final string not empty */ ||
|
||||
fd < 0 /* invalid as file descriptor */ ||
|
||||
fd > INT_MAX /* not representable as int */) {
|
||||
return -1;
|
||||
}
|
||||
return fd;
|
||||
}
|
||||
|
||||
/* round down to the nearest power of 2*/
|
||||
int64_t pow2floor(int64_t value)
|
||||
{
|
||||
if (!is_power_of_2(value)) {
|
||||
value = 0x8000000000000000ULL >> clz64(value);
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
/*
|
||||
* Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128)
|
||||
* Input is limited to 14-bit numbers
|
||||
*/
|
||||
int uleb128_encode_small(uint8_t *out, uint32_t n)
|
||||
{
|
||||
g_assert(n <= 0x3fff);
|
||||
if (n < 0x80) {
|
||||
*out++ = n;
|
||||
return 1;
|
||||
} else {
|
||||
*out++ = (n & 0x7f) | 0x80;
|
||||
*out++ = n >> 7;
|
||||
return 2;
|
||||
}
|
||||
}
|
||||
|
||||
int uleb128_decode_small(const uint8_t *in, uint32_t *n)
|
||||
{
|
||||
if (!(*in & 0x80)) {
|
||||
*n = *in++;
|
||||
return 1;
|
||||
} else {
|
||||
*n = *in++ & 0x7f;
|
||||
/* we exceed 14 bit number */
|
||||
if (*in & 0x80) {
|
||||
return -1;
|
||||
}
|
||||
*n |= *in++ << 7;
|
||||
return 2;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,70 +0,0 @@
|
||||
/*
|
||||
* Commandline option parsing functions
|
||||
*
|
||||
* Copyright (c) 2003-2008 Fabrice Bellard
|
||||
* Copyright (c) 2009 Kevin Wolf <kwolf@redhat.com>
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||||
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
* THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "qemu-common.h"
|
||||
#include "qapi/qmp/qerror.h"
|
||||
#include "qemu/option.h"
|
||||
|
||||
void parse_option_size(const char *name, const char *value,
|
||||
uint64_t *ret, Error **errp)
|
||||
{
|
||||
char *postfix;
|
||||
double sizef;
|
||||
|
||||
if (value != NULL) {
|
||||
sizef = strtod(value, &postfix);
|
||||
switch (*postfix) {
|
||||
case 'T':
|
||||
sizef *= 1024;
|
||||
/* fall through */
|
||||
case 'G':
|
||||
sizef *= 1024;
|
||||
/* fall through */
|
||||
case 'M':
|
||||
sizef *= 1024;
|
||||
/* fall through */
|
||||
case 'K':
|
||||
case 'k':
|
||||
sizef *= 1024;
|
||||
/* fall through */
|
||||
case 'b':
|
||||
case '\0':
|
||||
*ret = (uint64_t) sizef;
|
||||
break;
|
||||
default:
|
||||
error_set(errp, QERR_INVALID_PARAMETER_VALUE, name, "a size");
|
||||
#if 0 /* conversion from qerror_report() to error_set() broke this: */
|
||||
error_printf_unless_qmp("You may use k, M, G or T suffixes for "
|
||||
"kilobytes, megabytes, gigabytes and terabytes.\n");
|
||||
#endif
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
error_set(errp, QERR_INVALID_PARAMETER_VALUE, name, "a size");
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user