import Unicorn2

This commit is contained in:
Nguyen Anh Quynh
2021-10-03 22:14:44 +08:00
parent 772558119a
commit aaaea14214
837 changed files with 368717 additions and 200912 deletions

51
qemu/target/mips/TODO Normal file
View File

@@ -0,0 +1,51 @@
Unsolved issues/bugs in the mips/mipsel backend
-----------------------------------------------
General
-------
- Unimplemented ASEs:
- MDMX
- SmartMIPS
- microMIPS DSP r1 & r2 encodings
- MT ASE only partially implemented and not functional
- Shadow register support only partially implemented,
lacks set switching on interrupt/exception.
- 34K ITC not implemented.
- A general lack of documentation, especially for technical internals.
Existing documentation is x86-centric.
- Reverse endianness bit not implemented
- The TLB emulation is very inefficient:
QEMU's softmmu implements a x86-style MMU, with separate entries
for read/write/execute, a TLB index which is just a modulo of the
virtual address, and a set of TLBs for each user/kernel/supervisor
MMU mode.
MIPS has a single entry for read/write/execute and only one MMU mode.
But it is fully associative with randomized entry indices, and uses
up to 256 ASID tags as additional matching criterion (which roughly
equates to 256 MMU modes). It also has a global flag which causes
entries to match regardless of ASID.
To cope with these differences, QEMU currently flushes the TLB at
each ASID change. Using the MMU modes to implement ASIDs hinges on
implementing the global bit efficiently.
- save/restore of the CPU state is not implemented (see machine.c).
MIPS64
------
- Userland emulation (both n32 and n64) not functional.
"Generic" 4Kc system emulation
------------------------------
- Doesn't correspond to any real hardware. Should be removed some day,
U-Boot is the last remaining user.
PICA 61 system emulation
------------------------
- No framebuffer support yet.
MALTA system emulation
----------------------
- We fake firmware support instead of doing the real thing
- Real firmware (YAMON) falls over when trying to init RAM, presumably
due to lacking system controller emulation.
- Bonito system controller not implemented
- MSC1 system controller not implemented

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,172 @@
/*
* QEMU MIPS timer support
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
//#include "hw/irq.h"
//#include "hw/mips/cpudevs.h"
#include "qemu/timer.h"
//#include "sysemu/kvm.h"
#include "internal.h"
#define TIMER_PERIOD 10 /* 10 ns period for 100 Mhz frequency */
/* XXX: do not use a global */
uint32_t cpu_mips_get_random(CPUMIPSState *env)
{
static uint32_t seed = 1;
static uint32_t prev_idx = 0;
uint32_t idx;
uint32_t nb_rand_tlb = env->tlb->nb_tlb - env->CP0_Wired;
if (nb_rand_tlb == 1) {
return env->tlb->nb_tlb - 1;
}
/* Don't return same value twice, so get another value */
do {
/*
* Use a simple algorithm of Linear Congruential Generator
* from ISO/IEC 9899 standard.
*/
seed = 1103515245 * seed + 12345;
idx = (seed >> 16) % nb_rand_tlb + env->CP0_Wired;
} while (idx == prev_idx);
prev_idx = idx;
return idx;
}
#if 0
/* MIPS R4K timer */
static void cpu_mips_timer_update(CPUMIPSState *env)
{
uint64_t now, next;
uint32_t wait;
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
wait = env->CP0_Compare - env->CP0_Count - (uint32_t)(now / TIMER_PERIOD);
next = now + (uint64_t)wait * TIMER_PERIOD;
timer_mod(env->timer, next);
}
/* Expire the timer. */
static void cpu_mips_timer_expire(CPUMIPSState *env)
{
cpu_mips_timer_update(env);
if (env->insn_flags & ISA_MIPS32R2) {
env->CP0_Cause |= 1 << CP0Ca_TI;
}
qemu_irq_raise(env->irq[(env->CP0_IntCtl >> CP0IntCtl_IPTI) & 0x7]);
}
uint32_t cpu_mips_get_count(CPUMIPSState *env)
{
if (env->CP0_Cause & (1 << CP0Ca_DC)) {
return env->CP0_Count;
} else {
uint64_t now;
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
if (timer_pending(env->timer)
&& timer_expired(env->timer, now)) {
/* The timer has already expired. */
cpu_mips_timer_expire(env);
}
return env->CP0_Count + (uint32_t)(now / TIMER_PERIOD);
}
}
void cpu_mips_store_count(CPUMIPSState *env, uint32_t count)
{
/*
* This gets called from cpu_state_reset(), potentially before timer init.
* So env->timer may be NULL, which is also the case with KVM enabled so
* treat timer as disabled in that case.
*/
if (env->CP0_Cause & (1 << CP0Ca_DC) || !env->timer) {
env->CP0_Count = count;
} else {
/* Store new count register */
env->CP0_Count = count -
(uint32_t)(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / TIMER_PERIOD);
/* Update timer timer */
cpu_mips_timer_update(env);
}
}
void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value)
{
env->CP0_Compare = value;
if (!(env->CP0_Cause & (1 << CP0Ca_DC))) {
cpu_mips_timer_update(env);
}
if (env->insn_flags & ISA_MIPS32R2) {
env->CP0_Cause &= ~(1 << CP0Ca_TI);
}
qemu_irq_lower(env->irq[(env->CP0_IntCtl >> CP0IntCtl_IPTI) & 0x7]);
}
void cpu_mips_start_count(CPUMIPSState *env)
{
cpu_mips_store_count(env, env->CP0_Count);
}
void cpu_mips_stop_count(CPUMIPSState *env)
{
/* Store the current value */
env->CP0_Count += (uint32_t)(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
TIMER_PERIOD);
}
static void mips_timer_cb(void *opaque)
{
CPUMIPSState *env;
env = opaque;
if (env->CP0_Cause & (1 << CP0Ca_DC)) {
return;
}
/*
* ??? This callback should occur when the counter is exactly equal to
* the comparator value. Offset the count by one to avoid immediately
* retriggering the callback before any virtual time has passed.
*/
env->CP0_Count++;
cpu_mips_timer_expire(env);
env->CP0_Count--;
}
void cpu_mips_clock_init(MIPSCPU *cpu)
{
CPUMIPSState *env = &cpu->env;
/*
* If we're in KVM mode, don't create the periodic timer, that is handled in
* kernel.
*/
if (!kvm_enabled()) {
env->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &mips_timer_cb, env);
}
}
#endif

View File

@@ -0,0 +1,25 @@
/*
* MIPS cpu parameters for qemu.
*
* SPDX-License-Identifier: LGPL-2.0+
*/
#ifndef MIPS_CPU_PARAM_H
#define MIPS_CPU_PARAM_H 1
#ifdef TARGET_MIPS64
# define TARGET_LONG_BITS 64
#else
# define TARGET_LONG_BITS 32
#endif
#ifdef TARGET_MIPS64
#define TARGET_PHYS_ADDR_SPACE_BITS 48
#define TARGET_VIRT_ADDR_SPACE_BITS 48
#else
#define TARGET_PHYS_ADDR_SPACE_BITS 40
#define TARGET_VIRT_ADDR_SPACE_BITS 32
#endif
#define TARGET_PAGE_BITS 12
#define NB_MMU_MODES 4
#endif

View File

@@ -0,0 +1,52 @@
/*
* QEMU MIPS CPU
*
* Copyright (c) 2012 SUSE LINUX Products GmbH
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see
* <http://www.gnu.org/licenses/lgpl-2.1.html>
*/
#ifndef QEMU_MIPS_CPU_QOM_H
#define QEMU_MIPS_CPU_QOM_H
#include "hw/core/cpu.h"
#ifdef TARGET_MIPS64
#define TYPE_MIPS_CPU "mips64-cpu"
#else
#define TYPE_MIPS_CPU "mips-cpu"
#endif
#define MIPS_CPU(obj) ((MIPSCPU *)obj)
#define MIPS_CPU_CLASS(klass) ((MIPSCPUClass *)klass)
#define MIPS_CPU_GET_CLASS(obj) (&((MIPSCPU *)obj)->cc)
/**
* MIPSCPUClass:
* @parent_realize: The parent class' realize handler.
* @parent_reset: The parent class' reset handler.
*
* A MIPS CPU model.
*/
typedef struct MIPSCPUClass {
/*< private >*/
CPUClass parent_class;
/*< public >*/
void (*parent_reset)(CPUState *cpu);
} MIPSCPUClass;
typedef struct MIPSCPU MIPSCPU;
#endif

208
qemu/target/mips/cpu.c Normal file
View File

@@ -0,0 +1,208 @@
/*
* QEMU MIPS CPU
*
* Copyright (c) 2012 SUSE LINUX Products GmbH
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see
* <http://www.gnu.org/licenses/lgpl-2.1.html>
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "internal.h"
#include "exec/exec-all.h"
#include <uc_priv.h>
static void mips_cpu_set_pc(CPUState *cs, vaddr value)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
env->active_tc.PC = value & ~(target_ulong)1;
if (value & 1) {
env->hflags |= MIPS_HFLAG_M16;
} else {
env->hflags &= ~(MIPS_HFLAG_M16);
}
}
static void mips_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
env->active_tc.PC = tb->pc;
env->hflags &= ~MIPS_HFLAG_BMASK;
env->hflags |= tb->flags & MIPS_HFLAG_BMASK;
}
static bool mips_cpu_has_work(CPUState *cs)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
bool has_work = false;
/*
* Prior to MIPS Release 6 it is implementation dependent if non-enabled
* interrupts wake-up the CPU, however most of the implementations only
* check for interrupts that can be taken.
*/
if ((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
cpu_mips_hw_interrupts_pending(env)) {
if (cpu_mips_hw_interrupts_enabled(env) ||
(env->insn_flags & ISA_MIPS32R6)) {
has_work = true;
}
}
/* MIPS-MT has the ability to halt the CPU. */
if (env->CP0_Config3 & (1 << CP0C3_MT)) {
/*
* The QEMU model will issue an _WAKE request whenever the CPUs
* should be woken up.
*/
if (cs->interrupt_request & CPU_INTERRUPT_WAKE) {
has_work = true;
}
if (!mips_vpe_active(env)) {
has_work = false;
}
}
/* MIPS Release 6 has the ability to halt the CPU. */
if (env->CP0_Config5 & (1 << CP0C5_VP)) {
if (cs->interrupt_request & CPU_INTERRUPT_WAKE) {
has_work = true;
}
if (!mips_vp_active(env, cs)) {
has_work = false;
}
}
return has_work;
}
static void mips_cpu_reset(CPUState *dev)
{
CPUState *s = CPU(dev);
MIPSCPU *cpu = MIPS_CPU(s);
MIPSCPUClass *mcc = MIPS_CPU_GET_CLASS(cpu);
CPUMIPSState *env = &cpu->env;
mcc->parent_reset(dev);
memset(env, 0, offsetof(CPUMIPSState, end_reset_fields));
cpu_state_reset(env);
}
static void mips_cpu_realizefn(CPUState *dev)
{
CPUState *cs = CPU(dev);
MIPSCPU *cpu = MIPS_CPU(dev);
cpu_exec_realizefn(cs);
cpu_mips_realize_env(&cpu->env);
cpu_reset(cs);
}
static void mips_cpu_initfn(struct uc_struct *uc, CPUState *obj)
{
MIPSCPU *cpu = MIPS_CPU(obj);
CPUMIPSState *env = &cpu->env;
env->uc = uc;
cpu_set_cpustate_pointers(cpu);
}
static void mips_cpu_class_init(CPUClass *c)
{
MIPSCPUClass *mcc = MIPS_CPU_CLASS(c);
CPUClass *cc = CPU_CLASS(c);
/* parent class is CPUClass, parent_reset() is cpu_common_reset(). */
mcc->parent_reset = cc->reset;
/* overwrite the CPUClass->reset to arch reset: x86_cpu_reset(). */
cc->reset = mips_cpu_reset;
cc->has_work = mips_cpu_has_work;
cc->do_interrupt = mips_cpu_do_interrupt;
cc->cpu_exec_interrupt = mips_cpu_exec_interrupt;
cc->set_pc = mips_cpu_set_pc;
cc->synchronize_from_tb = mips_cpu_synchronize_from_tb;
cc->do_unaligned_access = mips_cpu_do_unaligned_access;
cc->get_phys_page_debug = mips_cpu_get_phys_page_debug;
cc->tcg_initialize = mips_tcg_init;
cc->tlb_fill = mips_cpu_tlb_fill;
}
MIPSCPU *cpu_mips_init(struct uc_struct *uc, const char *cpu_model)
{
MIPSCPU *cpu;
CPUState *cs;
CPUClass *cc;
CPUMIPSState *env;
int i;
if (cpu_model == NULL) {
#ifdef TARGET_MIPS64
cpu_model = "R4000";
#else
cpu_model = "24Kf";
#endif
}
cpu = calloc(1, sizeof(*cpu));
if (cpu == NULL) {
return NULL;
}
cs = (CPUState *)cpu;
cc = (CPUClass *)&cpu->cc;
cs->cc = cc;
cs->uc = uc;
uc->cpu = cs;
cpu_class_init(uc, cc);
mips_cpu_class_init(cc);
cpu_common_initfn(uc, cs);
mips_cpu_initfn(uc, cs);
env = &cpu->env;
for (i = 0; i < mips_defs_number; i++) {
if (strcasecmp(cpu_model, mips_defs[i].name) == 0) {
env->cpu_model = &(mips_defs[i]);
break;
}
}
if (env->cpu_model == NULL) {
free(cpu);
return NULL;
}
mips_cpu_realizefn(cs);
// init address space
cpu_address_space_init(cs, 0, cs->memory);
qemu_init_vcpu(cs);
return cpu;
}

1272
qemu/target/mips/cpu.h Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

1498
qemu/target/mips/helper.c Normal file

File diff suppressed because it is too large Load Diff

1167
qemu/target/mips/helper.h Normal file

File diff suppressed because it is too large Load Diff

451
qemu/target/mips/internal.h Normal file
View File

@@ -0,0 +1,451 @@
/*
* MIPS internal definitions and helpers
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#ifndef MIPS_INTERNAL_H
#define MIPS_INTERNAL_H
#include "fpu/softfloat-helpers.h"
#include "cpu.h"
struct uc_struct;
/*
* MMU types, the first four entries have the same layout as the
* CP0C0_MT field.
*/
enum mips_mmu_types {
MMU_TYPE_NONE,
MMU_TYPE_R4000,
MMU_TYPE_RESERVED,
MMU_TYPE_FMT,
MMU_TYPE_R3000,
MMU_TYPE_R6000,
MMU_TYPE_R8000
};
struct mips_def_t {
const char *name;
int32_t CP0_PRid;
int32_t CP0_Config0;
int32_t CP0_Config1;
int32_t CP0_Config2;
int32_t CP0_Config3;
int32_t CP0_Config4;
int32_t CP0_Config4_rw_bitmask;
int32_t CP0_Config5;
int32_t CP0_Config5_rw_bitmask;
int32_t CP0_Config6;
int32_t CP0_Config7;
target_ulong CP0_LLAddr_rw_bitmask;
int CP0_LLAddr_shift;
int32_t SYNCI_Step;
int32_t CCRes;
int32_t CP0_Status_rw_bitmask;
int32_t CP0_TCStatus_rw_bitmask;
int32_t CP0_SRSCtl;
int32_t CP1_fcr0;
int32_t CP1_fcr31_rw_bitmask;
int32_t CP1_fcr31;
int32_t MSAIR;
int32_t SEGBITS;
int32_t PABITS;
int32_t CP0_SRSConf0_rw_bitmask;
int32_t CP0_SRSConf0;
int32_t CP0_SRSConf1_rw_bitmask;
int32_t CP0_SRSConf1;
int32_t CP0_SRSConf2_rw_bitmask;
int32_t CP0_SRSConf2;
int32_t CP0_SRSConf3_rw_bitmask;
int32_t CP0_SRSConf3;
int32_t CP0_SRSConf4_rw_bitmask;
int32_t CP0_SRSConf4;
int32_t CP0_PageGrain_rw_bitmask;
int32_t CP0_PageGrain;
target_ulong CP0_EBaseWG_rw_bitmask;
uint64_t insn_flags;
enum mips_mmu_types mmu_type;
int32_t SAARP;
};
extern const struct mips_def_t mips_defs[];
extern const int mips_defs_number;
enum CPUMIPSMSADataFormat {
DF_BYTE = 0,
DF_HALF,
DF_WORD,
DF_DOUBLE
};
void mips_cpu_do_interrupt(CPUState *cpu);
bool mips_cpu_exec_interrupt(CPUState *cpu, int int_req);
hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
void mips_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr);
typedef struct r4k_tlb_t r4k_tlb_t;
struct r4k_tlb_t {
target_ulong VPN;
uint32_t PageMask;
uint16_t ASID;
uint32_t MMID;
unsigned int G:1;
unsigned int C0:3;
unsigned int C1:3;
unsigned int V0:1;
unsigned int V1:1;
unsigned int D0:1;
unsigned int D1:1;
unsigned int XI0:1;
unsigned int XI1:1;
unsigned int RI0:1;
unsigned int RI1:1;
unsigned int EHINV:1;
uint64_t PFN[2];
};
struct CPUMIPSTLBContext {
uint32_t nb_tlb;
uint32_t tlb_in_use;
int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot,
target_ulong address, int rw, int access_type);
void (*helper_tlbwi)(struct CPUMIPSState *env);
void (*helper_tlbwr)(struct CPUMIPSState *env);
void (*helper_tlbp)(struct CPUMIPSState *env);
void (*helper_tlbr)(struct CPUMIPSState *env);
void (*helper_tlbinv)(struct CPUMIPSState *env);
void (*helper_tlbinvf)(struct CPUMIPSState *env);
union {
struct {
r4k_tlb_t tlb[MIPS_TLB_MAX];
} r4k;
} mmu;
};
int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
target_ulong address, int rw, int access_type);
int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
target_ulong address, int rw, int access_type);
int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
target_ulong address, int rw, int access_type);
void r4k_helper_tlbwi(CPUMIPSState *env);
void r4k_helper_tlbwr(CPUMIPSState *env);
void r4k_helper_tlbp(CPUMIPSState *env);
void r4k_helper_tlbr(CPUMIPSState *env);
void r4k_helper_tlbinv(CPUMIPSState *env);
void r4k_helper_tlbinvf(CPUMIPSState *env);
void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra);
void mips_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
vaddr addr, unsigned size,
MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response, uintptr_t retaddr);
hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
int rw);
#define cpu_signal_handler cpu_mips_signal_handler
static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env)
{
return (env->CP0_Status & (1 << CP0St_IE)) &&
!(env->CP0_Status & (1 << CP0St_EXL)) &&
!(env->CP0_Status & (1 << CP0St_ERL)) &&
!(env->hflags & MIPS_HFLAG_DM) &&
/*
* Note that the TCStatus IXMT field is initialized to zero,
* and only MT capable cores can set it to one. So we don't
* need to check for MT capabilities here.
*/
!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT));
}
/* Check if there is pending and not masked out interrupt */
static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env)
{
int32_t pending;
int32_t status;
bool r;
pending = env->CP0_Cause & CP0Ca_IP_mask;
status = env->CP0_Status & CP0Ca_IP_mask;
if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
/*
* A MIPS configured with a vectorizing external interrupt controller
* will feed a vector into the Cause pending lines. The core treats
* the status lines as a vector level, not as indiviual masks.
*/
r = pending > status;
} else {
/*
* A MIPS configured with compatibility or VInt (Vectored Interrupts)
* treats the pending lines as individual interrupt lines, the status
* lines are individual masks.
*/
r = (pending & status) != 0;
}
return r;
}
void mips_tcg_init(struct uc_struct *uc);
/* TODO QOM'ify CPU reset and remove */
void cpu_state_reset(CPUMIPSState *s);
void cpu_mips_realize_env(CPUMIPSState *env);
/* cp0_timer.c */
uint32_t cpu_mips_get_random(CPUMIPSState *env);
uint32_t cpu_mips_get_count(CPUMIPSState *env);
void cpu_mips_store_count(CPUMIPSState *env, uint32_t value);
void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value);
void cpu_mips_start_count(CPUMIPSState *env);
void cpu_mips_stop_count(CPUMIPSState *env);
/* helper.c */
bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr);
/* op_helper.c */
uint32_t float_class_s(uint32_t arg, float_status *fst);
uint64_t float_class_d(uint64_t arg, float_status *fst);
extern unsigned int ieee_rm[];
int ieee_ex_to_mips(int xcpt);
void update_pagemask(CPUMIPSState *env, target_ulong arg1, int32_t *pagemask);
static inline void restore_rounding_mode(CPUMIPSState *env)
{
set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3],
&env->active_fpu.fp_status);
}
static inline void restore_flush_mode(CPUMIPSState *env)
{
set_flush_to_zero((env->active_fpu.fcr31 & (1 << FCR31_FS)) != 0,
&env->active_fpu.fp_status);
}
static inline void restore_snan_bit_mode(CPUMIPSState *env)
{
set_snan_bit_is_one((env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) == 0,
&env->active_fpu.fp_status);
}
static inline void restore_fp_status(CPUMIPSState *env)
{
restore_rounding_mode(env);
restore_flush_mode(env);
restore_snan_bit_mode(env);
}
static inline void restore_msa_fp_status(CPUMIPSState *env)
{
float_status *status = &env->active_tc.msa_fp_status;
int rounding_mode = (env->active_tc.msacsr & MSACSR_RM_MASK) >> MSACSR_RM;
bool flush_to_zero = (env->active_tc.msacsr & MSACSR_FS_MASK) != 0;
set_float_rounding_mode(ieee_rm[rounding_mode], status);
set_flush_to_zero(flush_to_zero, status);
set_flush_inputs_to_zero(flush_to_zero, status);
}
static inline void restore_pamask(CPUMIPSState *env)
{
if (env->hflags & MIPS_HFLAG_ELPA) {
env->PAMask = (1ULL << env->PABITS) - 1;
} else {
env->PAMask = PAMASK_BASE;
}
}
static inline int mips_vpe_active(CPUMIPSState *env)
{
int active = 1;
/* Check that the VPE is enabled. */
if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) {
active = 0;
}
/* Check that the VPE is activated. */
if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) {
active = 0;
}
/*
* Now verify that there are active thread contexts in the VPE.
*
* This assumes the CPU model will internally reschedule threads
* if the active one goes to sleep. If there are no threads available
* the active one will be in a sleeping state, and we can turn off
* the entire VPE.
*/
if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) {
/* TC is not activated. */
active = 0;
}
if (env->active_tc.CP0_TCHalt & 1) {
/* TC is in halt state. */
active = 0;
}
return active;
}
static inline int mips_vp_active(CPUMIPSState *env, CPUState *cpu)
{
/* Check if the VP disabled other VPs (which means the VP is enabled) */
if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
return 1;
}
/* Check if the virtual processor is disabled due to a DVP */
MIPSCPU *cs = MIPS_CPU(cpu);
if ((&cs->env != env) &&
((cs->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
return 0;
}
return 1;
}
static inline void compute_hflags(CPUMIPSState *env)
{
env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA |
MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL);
if (env->CP0_Status & (1 << CP0St_ERL)) {
env->hflags |= MIPS_HFLAG_ERL;
}
if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
!(env->CP0_Status & (1 << CP0St_ERL)) &&
!(env->hflags & MIPS_HFLAG_DM)) {
env->hflags |= (env->CP0_Status >> CP0St_KSU) &
MIPS_HFLAG_KSU;
}
#if defined(TARGET_MIPS64)
if ((env->insn_flags & ISA_MIPS3) &&
(((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
(env->CP0_Status & (1 << CP0St_PX)) ||
(env->CP0_Status & (1 << CP0St_UX)))) {
env->hflags |= MIPS_HFLAG_64;
}
if (!(env->insn_flags & ISA_MIPS3)) {
env->hflags |= MIPS_HFLAG_AWRAP;
} else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) &&
!(env->CP0_Status & (1 << CP0St_UX))) {
env->hflags |= MIPS_HFLAG_AWRAP;
} else if (env->insn_flags & ISA_MIPS64R6) {
/* Address wrapping for Supervisor and Kernel is specified in R6 */
if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) &&
!(env->CP0_Status & (1 << CP0St_SX))) ||
(((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) &&
!(env->CP0_Status & (1 << CP0St_KX)))) {
env->hflags |= MIPS_HFLAG_AWRAP;
}
}
#endif
if (((env->CP0_Status & (1 << CP0St_CU0)) &&
!(env->insn_flags & ISA_MIPS32R6)) ||
!(env->hflags & MIPS_HFLAG_KSU)) {
env->hflags |= MIPS_HFLAG_CP0;
}
if (env->CP0_Status & (1 << CP0St_CU1)) {
env->hflags |= MIPS_HFLAG_FPU;
}
if (env->CP0_Status & (1 << CP0St_FR)) {
env->hflags |= MIPS_HFLAG_F64;
}
if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) &&
(env->CP0_Config5 & (1 << CP0C5_SBRI))) {
env->hflags |= MIPS_HFLAG_SBRI;
}
if (env->insn_flags & ASE_DSP_R3) {
/*
* Our cpu supports DSP R3 ASE, so enable
* access to DSP R3 resources.
*/
if (env->CP0_Status & (1 << CP0St_MX)) {
env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 |
MIPS_HFLAG_DSP_R3;
}
} else if (env->insn_flags & ASE_DSP_R2) {
/*
* Our cpu supports DSP R2 ASE, so enable
* access to DSP R2 resources.
*/
if (env->CP0_Status & (1 << CP0St_MX)) {
env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2;
}
} else if (env->insn_flags & ASE_DSP) {
/*
* Our cpu supports DSP ASE, so enable
* access to DSP resources.
*/
if (env->CP0_Status & (1 << CP0St_MX)) {
env->hflags |= MIPS_HFLAG_DSP;
}
}
if (env->insn_flags & ISA_MIPS32R2) {
if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
env->hflags |= MIPS_HFLAG_COP1X;
}
} else if (env->insn_flags & ISA_MIPS32) {
if (env->hflags & MIPS_HFLAG_64) {
env->hflags |= MIPS_HFLAG_COP1X;
}
} else if (env->insn_flags & ISA_MIPS4) {
/*
* All supported MIPS IV CPUs use the XX (CU3) to enable
* and disable the MIPS IV extensions to the MIPS III ISA.
* Some other MIPS IV CPUs ignore the bit, so the check here
* would be too restrictive for them.
*/
if (env->CP0_Status & (1U << CP0St_CU3)) {
env->hflags |= MIPS_HFLAG_COP1X;
}
}
if (env->insn_flags & ASE_MSA) {
if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) {
env->hflags |= MIPS_HFLAG_MSA;
}
}
if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
env->hflags |= MIPS_HFLAG_FRE;
}
}
if (env->CP0_Config3 & (1 << CP0C3_LPA)) {
if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) {
env->hflags |= MIPS_HFLAG_ELPA;
}
}
}
void cpu_mips_tlb_flush(CPUMIPSState *env);
void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc);
void cpu_mips_store_status(CPUMIPSState *env, target_ulong val);
void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val);
void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env, uint32_t exception,
int error_code, uintptr_t pc);
static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env,
uint32_t exception,
uintptr_t pc)
{
do_raise_exception_err(env, exception, 0, pc);
}
#endif

View File

@@ -0,0 +1,747 @@
/*
* Loongson Multimedia Instruction emulation helpers for QEMU.
*
* Copyright (c) 2011 Richard Henderson <rth@twiddle.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
/*
* If the byte ordering doesn't matter, i.e. all columns are treated
* identically, then this union can be used directly. If byte ordering
* does matter, we generally ignore dumping to memory.
*/
typedef union {
uint8_t ub[8];
int8_t sb[8];
uint16_t uh[4];
int16_t sh[4];
uint32_t uw[2];
int32_t sw[2];
uint64_t d;
} LMIValue;
/* Some byte ordering issues can be mitigated by XORing in the following. */
#ifdef HOST_WORDS_BIGENDIAN
# define BYTE_ORDER_XOR(N) N
#else
# define BYTE_ORDER_XOR(N) 0
#endif
#define SATSB(x) (x < -0x80 ? -0x80 : x > 0x7f ? 0x7f : x)
#define SATUB(x) (x > 0xff ? 0xff : x)
#define SATSH(x) (x < -0x8000 ? -0x8000 : x > 0x7fff ? 0x7fff : x)
#define SATUH(x) (x > 0xffff ? 0xffff : x)
#define SATSW(x) \
(x < -0x80000000ll ? -0x80000000ll : x > 0x7fffffff ? 0x7fffffff : x)
#define SATUW(x) (x > 0xffffffffull ? 0xffffffffull : x)
uint64_t helper_paddsb(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned int i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 8; ++i) {
int r = vs.sb[i] + vt.sb[i];
vs.sb[i] = SATSB(r);
}
return vs.d;
}
uint64_t helper_paddusb(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned int i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 8; ++i) {
int r = vs.ub[i] + vt.ub[i];
vs.ub[i] = SATUB(r);
}
return vs.d;
}
uint64_t helper_paddsh(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned int i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 4; ++i) {
int r = vs.sh[i] + vt.sh[i];
vs.sh[i] = SATSH(r);
}
return vs.d;
}
uint64_t helper_paddush(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned int i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 4; ++i) {
int r = vs.uh[i] + vt.uh[i];
vs.uh[i] = SATUH(r);
}
return vs.d;
}
uint64_t helper_paddb(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned int i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 8; ++i) {
vs.ub[i] += vt.ub[i];
}
return vs.d;
}
uint64_t helper_paddh(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned int i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 4; ++i) {
vs.uh[i] += vt.uh[i];
}
return vs.d;
}
uint64_t helper_paddw(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned int i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 2; ++i) {
vs.uw[i] += vt.uw[i];
}
return vs.d;
}
uint64_t helper_psubsb(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned int i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 8; ++i) {
int r = vs.sb[i] - vt.sb[i];
vs.sb[i] = SATSB(r);
}
return vs.d;
}
uint64_t helper_psubusb(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned int i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 8; ++i) {
int r = vs.ub[i] - vt.ub[i];
vs.ub[i] = SATUB(r);
}
return vs.d;
}
uint64_t helper_psubsh(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned int i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 4; ++i) {
int r = vs.sh[i] - vt.sh[i];
vs.sh[i] = SATSH(r);
}
return vs.d;
}
uint64_t helper_psubush(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned int i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 4; ++i) {
int r = vs.uh[i] - vt.uh[i];
vs.uh[i] = SATUH(r);
}
return vs.d;
}
uint64_t helper_psubb(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned int i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 8; ++i) {
vs.ub[i] -= vt.ub[i];
}
return vs.d;
}
uint64_t helper_psubh(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned int i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 4; ++i) {
vs.uh[i] -= vt.uh[i];
}
return vs.d;
}
uint64_t helper_psubw(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned int i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 2; ++i) {
vs.uw[i] -= vt.uw[i];
}
return vs.d;
}
uint64_t helper_pshufh(uint64_t fs, uint64_t ft)
{
unsigned host = BYTE_ORDER_XOR(3);
LMIValue vd, vs;
unsigned i;
vs.d = fs;
vd.d = 0;
for (i = 0; i < 4; i++, ft >>= 2) {
vd.uh[i ^ host] = vs.uh[(ft & 3) ^ host];
}
return vd.d;
}
uint64_t helper_packsswh(uint64_t fs, uint64_t ft)
{
uint64_t fd = 0;
int64_t tmp;
tmp = (int32_t)(fs >> 0);
tmp = SATSH(tmp);
fd |= (tmp & 0xffff) << 0;
tmp = (int32_t)(fs >> 32);
tmp = SATSH(tmp);
fd |= (tmp & 0xffff) << 16;
tmp = (int32_t)(ft >> 0);
tmp = SATSH(tmp);
fd |= (tmp & 0xffff) << 32;
tmp = (int32_t)(ft >> 32);
tmp = SATSH(tmp);
fd |= (tmp & 0xffff) << 48;
return fd;
}
uint64_t helper_packsshb(uint64_t fs, uint64_t ft)
{
uint64_t fd = 0;
unsigned int i;
for (i = 0; i < 4; ++i) {
int16_t tmp = fs >> (i * 16);
tmp = SATSB(tmp);
fd |= (uint64_t)(tmp & 0xff) << (i * 8);
}
for (i = 0; i < 4; ++i) {
int16_t tmp = ft >> (i * 16);
tmp = SATSB(tmp);
fd |= (uint64_t)(tmp & 0xff) << (i * 8 + 32);
}
return fd;
}
uint64_t helper_packushb(uint64_t fs, uint64_t ft)
{
uint64_t fd = 0;
unsigned int i;
for (i = 0; i < 4; ++i) {
int16_t tmp = fs >> (i * 16);
tmp = SATUB(tmp);
fd |= (uint64_t)(tmp & 0xff) << (i * 8);
}
for (i = 0; i < 4; ++i) {
int16_t tmp = ft >> (i * 16);
tmp = SATUB(tmp);
fd |= (uint64_t)(tmp & 0xff) << (i * 8 + 32);
}
return fd;
}
uint64_t helper_punpcklwd(uint64_t fs, uint64_t ft)
{
return (fs & 0xffffffff) | (ft << 32);
}
uint64_t helper_punpckhwd(uint64_t fs, uint64_t ft)
{
return (fs >> 32) | (ft & ~0xffffffffull);
}
uint64_t helper_punpcklhw(uint64_t fs, uint64_t ft)
{
unsigned host = BYTE_ORDER_XOR(3);
LMIValue vd, vs, vt;
vs.d = fs;
vt.d = ft;
vd.uh[0 ^ host] = vs.uh[0 ^ host];
vd.uh[1 ^ host] = vt.uh[0 ^ host];
vd.uh[2 ^ host] = vs.uh[1 ^ host];
vd.uh[3 ^ host] = vt.uh[1 ^ host];
return vd.d;
}
uint64_t helper_punpckhhw(uint64_t fs, uint64_t ft)
{
unsigned host = BYTE_ORDER_XOR(3);
LMIValue vd, vs, vt;
vs.d = fs;
vt.d = ft;
vd.uh[0 ^ host] = vs.uh[2 ^ host];
vd.uh[1 ^ host] = vt.uh[2 ^ host];
vd.uh[2 ^ host] = vs.uh[3 ^ host];
vd.uh[3 ^ host] = vt.uh[3 ^ host];
return vd.d;
}
uint64_t helper_punpcklbh(uint64_t fs, uint64_t ft)
{
unsigned host = BYTE_ORDER_XOR(7);
LMIValue vd, vs, vt;
vs.d = fs;
vt.d = ft;
vd.ub[0 ^ host] = vs.ub[0 ^ host];
vd.ub[1 ^ host] = vt.ub[0 ^ host];
vd.ub[2 ^ host] = vs.ub[1 ^ host];
vd.ub[3 ^ host] = vt.ub[1 ^ host];
vd.ub[4 ^ host] = vs.ub[2 ^ host];
vd.ub[5 ^ host] = vt.ub[2 ^ host];
vd.ub[6 ^ host] = vs.ub[3 ^ host];
vd.ub[7 ^ host] = vt.ub[3 ^ host];
return vd.d;
}
uint64_t helper_punpckhbh(uint64_t fs, uint64_t ft)
{
unsigned host = BYTE_ORDER_XOR(7);
LMIValue vd, vs, vt;
vs.d = fs;
vt.d = ft;
vd.ub[0 ^ host] = vs.ub[4 ^ host];
vd.ub[1 ^ host] = vt.ub[4 ^ host];
vd.ub[2 ^ host] = vs.ub[5 ^ host];
vd.ub[3 ^ host] = vt.ub[5 ^ host];
vd.ub[4 ^ host] = vs.ub[6 ^ host];
vd.ub[5 ^ host] = vt.ub[6 ^ host];
vd.ub[6 ^ host] = vs.ub[7 ^ host];
vd.ub[7 ^ host] = vt.ub[7 ^ host];
return vd.d;
}
uint64_t helper_pavgh(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 4; i++) {
vs.uh[i] = (vs.uh[i] + vt.uh[i] + 1) >> 1;
}
return vs.d;
}
uint64_t helper_pavgb(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 8; i++) {
vs.ub[i] = (vs.ub[i] + vt.ub[i] + 1) >> 1;
}
return vs.d;
}
uint64_t helper_pmaxsh(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 4; i++) {
vs.sh[i] = (vs.sh[i] >= vt.sh[i] ? vs.sh[i] : vt.sh[i]);
}
return vs.d;
}
uint64_t helper_pminsh(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 4; i++) {
vs.sh[i] = (vs.sh[i] <= vt.sh[i] ? vs.sh[i] : vt.sh[i]);
}
return vs.d;
}
uint64_t helper_pmaxub(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 4; i++) {
vs.ub[i] = (vs.ub[i] >= vt.ub[i] ? vs.ub[i] : vt.ub[i]);
}
return vs.d;
}
uint64_t helper_pminub(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 4; i++) {
vs.ub[i] = (vs.ub[i] <= vt.ub[i] ? vs.ub[i] : vt.ub[i]);
}
return vs.d;
}
uint64_t helper_pcmpeqw(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 2; i++) {
vs.uw[i] = -(vs.uw[i] == vt.uw[i]);
}
return vs.d;
}
uint64_t helper_pcmpgtw(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 2; i++) {
vs.uw[i] = -(vs.uw[i] > vt.uw[i]);
}
return vs.d;
}
uint64_t helper_pcmpeqh(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 4; i++) {
vs.uh[i] = -(vs.uh[i] == vt.uh[i]);
}
return vs.d;
}
uint64_t helper_pcmpgth(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 4; i++) {
vs.uh[i] = -(vs.uh[i] > vt.uh[i]);
}
return vs.d;
}
uint64_t helper_pcmpeqb(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 8; i++) {
vs.ub[i] = -(vs.ub[i] == vt.ub[i]);
}
return vs.d;
}
uint64_t helper_pcmpgtb(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 8; i++) {
vs.ub[i] = -(vs.ub[i] > vt.ub[i]);
}
return vs.d;
}
uint64_t helper_psllw(uint64_t fs, uint64_t ft)
{
LMIValue vs;
unsigned i;
ft &= 0x7f;
if (ft > 31) {
return 0;
}
vs.d = fs;
for (i = 0; i < 2; ++i) {
vs.uw[i] <<= ft;
}
return vs.d;
}
uint64_t helper_psrlw(uint64_t fs, uint64_t ft)
{
LMIValue vs;
unsigned i;
ft &= 0x7f;
if (ft > 31) {
return 0;
}
vs.d = fs;
for (i = 0; i < 2; ++i) {
vs.uw[i] >>= ft;
}
return vs.d;
}
uint64_t helper_psraw(uint64_t fs, uint64_t ft)
{
LMIValue vs;
unsigned i;
ft &= 0x7f;
if (ft > 31) {
ft = 31;
}
vs.d = fs;
for (i = 0; i < 2; ++i) {
vs.sw[i] >>= ft;
}
return vs.d;
}
uint64_t helper_psllh(uint64_t fs, uint64_t ft)
{
LMIValue vs;
unsigned i;
ft &= 0x7f;
if (ft > 15) {
return 0;
}
vs.d = fs;
for (i = 0; i < 4; ++i) {
vs.uh[i] <<= ft;
}
return vs.d;
}
uint64_t helper_psrlh(uint64_t fs, uint64_t ft)
{
LMIValue vs;
unsigned i;
ft &= 0x7f;
if (ft > 15) {
return 0;
}
vs.d = fs;
for (i = 0; i < 4; ++i) {
vs.uh[i] >>= ft;
}
return vs.d;
}
uint64_t helper_psrah(uint64_t fs, uint64_t ft)
{
LMIValue vs;
unsigned i;
ft &= 0x7f;
if (ft > 15) {
ft = 15;
}
vs.d = fs;
for (i = 0; i < 4; ++i) {
vs.sh[i] >>= ft;
}
return vs.d;
}
uint64_t helper_pmullh(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 4; ++i) {
vs.sh[i] *= vt.sh[i];
}
return vs.d;
}
uint64_t helper_pmulhh(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 4; ++i) {
int32_t r = vs.sh[i] * vt.sh[i];
vs.sh[i] = r >> 16;
}
return vs.d;
}
uint64_t helper_pmulhuh(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 4; ++i) {
uint32_t r = vs.uh[i] * vt.uh[i];
vs.uh[i] = r >> 16;
}
return vs.d;
}
uint64_t helper_pmaddhw(uint64_t fs, uint64_t ft)
{
unsigned host = BYTE_ORDER_XOR(3);
LMIValue vs, vt;
uint32_t p0, p1;
vs.d = fs;
vt.d = ft;
p0 = vs.sh[0 ^ host] * vt.sh[0 ^ host];
p0 += vs.sh[1 ^ host] * vt.sh[1 ^ host];
p1 = vs.sh[2 ^ host] * vt.sh[2 ^ host];
p1 += vs.sh[3 ^ host] * vt.sh[3 ^ host];
return ((uint64_t)p1 << 32) | p0;
}
uint64_t helper_pasubub(uint64_t fs, uint64_t ft)
{
LMIValue vs, vt;
unsigned i;
vs.d = fs;
vt.d = ft;
for (i = 0; i < 8; ++i) {
int r = vs.ub[i] - vt.ub[i];
vs.ub[i] = (r < 0 ? -r : r);
}
return vs.d;
}
uint64_t helper_biadd(uint64_t fs)
{
unsigned i, fd;
for (i = fd = 0; i < 8; ++i) {
fd += (fs >> (i * 8)) & 0xff;
}
return fd & 0xffff;
}
uint64_t helper_pmovmskb(uint64_t fs)
{
unsigned fd = 0;
fd |= ((fs >> 7) & 1) << 0;
fd |= ((fs >> 15) & 1) << 1;
fd |= ((fs >> 23) & 1) << 2;
fd |= ((fs >> 31) & 1) << 3;
fd |= ((fs >> 39) & 1) << 4;
fd |= ((fs >> 47) & 1) << 5;
fd |= ((fs >> 55) & 1) << 6;
fd |= ((fs >> 63) & 1) << 7;
return fd & 0xff;
}

View File

@@ -0,0 +1,105 @@
#ifndef QEMU_MIPS_DEFS_H
#define QEMU_MIPS_DEFS_H
/*
* If we want to use host float regs...
*
* #define USE_HOST_FLOAT_REGS
*/
/* Real pages are variable size... */
#define MIPS_TLB_MAX 128
/*
* bit definitions for insn_flags (ISAs/ASEs flags)
* ------------------------------------------------
*/
/*
* bits 0-31: MIPS base instruction sets
*/
#define ISA_MIPS1 0x0000000000000001ULL
#define ISA_MIPS2 0x0000000000000002ULL
#define ISA_MIPS3 0x0000000000000004ULL
#define ISA_MIPS4 0x0000000000000008ULL
#define ISA_MIPS5 0x0000000000000010ULL
#define ISA_MIPS32 0x0000000000000020ULL
#define ISA_MIPS32R2 0x0000000000000040ULL
#define ISA_MIPS64 0x0000000000000080ULL
#define ISA_MIPS64R2 0x0000000000000100ULL
#define ISA_MIPS32R3 0x0000000000000200ULL
#define ISA_MIPS64R3 0x0000000000000400ULL
#define ISA_MIPS32R5 0x0000000000000800ULL
#define ISA_MIPS64R5 0x0000000000001000ULL
#define ISA_MIPS32R6 0x0000000000002000ULL
#define ISA_MIPS64R6 0x0000000000004000ULL
#define ISA_NANOMIPS32 0x0000000000008000ULL
/*
* bits 32-47: MIPS ASEs
*/
#define ASE_MIPS16 0x0000000100000000ULL
#define ASE_MIPS3D 0x0000000200000000ULL
#define ASE_MDMX 0x0000000400000000ULL
#define ASE_DSP 0x0000000800000000ULL
#define ASE_DSP_R2 0x0000001000000000ULL
#define ASE_DSP_R3 0x0000002000000000ULL
#define ASE_MT 0x0000004000000000ULL
#define ASE_SMARTMIPS 0x0000008000000000ULL
#define ASE_MICROMIPS 0x0000010000000000ULL
#define ASE_MSA 0x0000020000000000ULL
/*
* bits 48-55: vendor-specific base instruction sets
*/
#define INSN_LOONGSON2E 0x0001000000000000ULL
#define INSN_LOONGSON2F 0x0002000000000000ULL
#define INSN_VR54XX 0x0004000000000000ULL
#define INSN_R5900 0x0008000000000000ULL
/*
* bits 56-63: vendor-specific ASEs
*/
#define ASE_MMI 0x0100000000000000ULL
#define ASE_MXU 0x0200000000000000ULL
/* MIPS CPU defines. */
#define CPU_MIPS1 (ISA_MIPS1)
#define CPU_MIPS2 (CPU_MIPS1 | ISA_MIPS2)
#define CPU_MIPS3 (CPU_MIPS2 | ISA_MIPS3)
#define CPU_MIPS4 (CPU_MIPS3 | ISA_MIPS4)
#define CPU_VR54XX (CPU_MIPS4 | INSN_VR54XX)
#define CPU_R5900 (CPU_MIPS3 | INSN_R5900)
#define CPU_LOONGSON2E (CPU_MIPS3 | INSN_LOONGSON2E)
#define CPU_LOONGSON2F (CPU_MIPS3 | INSN_LOONGSON2F)
#define CPU_MIPS5 (CPU_MIPS4 | ISA_MIPS5)
/* MIPS Technologies "Release 1" */
#define CPU_MIPS32 (CPU_MIPS2 | ISA_MIPS32)
#define CPU_MIPS64 (CPU_MIPS5 | CPU_MIPS32 | ISA_MIPS64)
/* MIPS Technologies "Release 2" */
#define CPU_MIPS32R2 (CPU_MIPS32 | ISA_MIPS32R2)
#define CPU_MIPS64R2 (CPU_MIPS64 | CPU_MIPS32R2 | ISA_MIPS64R2)
/* MIPS Technologies "Release 3" */
#define CPU_MIPS32R3 (CPU_MIPS32R2 | ISA_MIPS32R3)
#define CPU_MIPS64R3 (CPU_MIPS64R2 | CPU_MIPS32R3 | ISA_MIPS64R3)
/* MIPS Technologies "Release 5" */
#define CPU_MIPS32R5 (CPU_MIPS32R3 | ISA_MIPS32R5)
#define CPU_MIPS64R5 (CPU_MIPS64R3 | CPU_MIPS32R5 | ISA_MIPS64R5)
/* MIPS Technologies "Release 6" */
#define CPU_MIPS32R6 (CPU_MIPS32R5 | ISA_MIPS32R6)
#define CPU_MIPS64R6 (CPU_MIPS64R5 | CPU_MIPS32R6 | ISA_MIPS64R6)
/* Wave Computing: "nanoMIPS" */
#define CPU_NANOMIPS32 (CPU_MIPS32R6 | ISA_NANOMIPS32)
/*
* Strictly follow the architecture standard:
* - Disallow "special" instruction handling for PMON/SPIM.
* Note that we still maintain Count/Compare to match the host clock.
*
* #define MIPS_STRICT_STANDARD 1
*/
#endif /* QEMU_MIPS_DEFS_H */

File diff suppressed because it is too large Load Diff

1364
qemu/target/mips/op_helper.c Normal file

File diff suppressed because it is too large Load Diff

31409
qemu/target/mips/translate.c Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,941 @@
/*
* MIPS emulation for qemu: CPU initialisation routines.
*
* Copyright (c) 2004-2005 Jocelyn Mayer
* Copyright (c) 2007 Herve Poussineau
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/* CPU / CPU family specific config register values. */
/* Have config1, uncached coherency */
#define MIPS_CONFIG0 \
((1U << CP0C0_M) | (0x2 << CP0C0_K0))
/* Have config2, no coprocessor2 attached, no MDMX support attached,
no performance counters, watch registers present,
no code compression, EJTAG present, no FPU */
#define MIPS_CONFIG1 \
((1U << CP0C1_M) | \
(0 << CP0C1_C2) | (0 << CP0C1_MD) | (0 << CP0C1_PC) | \
(1 << CP0C1_WR) | (0 << CP0C1_CA) | (1 << CP0C1_EP) | \
(0 << CP0C1_FP))
/* Have config3, no tertiary/secondary caches implemented */
#define MIPS_CONFIG2 \
((1U << CP0C2_M))
/* No config4, no DSP ASE, no large physaddr (PABITS),
no external interrupt controller, no vectored interrupts,
no 1kb pages, no SmartMIPS ASE, no trace logic */
#define MIPS_CONFIG3 \
((0 << CP0C3_M) | (0 << CP0C3_DSPP) | (0 << CP0C3_LPA) | \
(0 << CP0C3_VEIC) | (0 << CP0C3_VInt) | (0 << CP0C3_SP) | \
(0 << CP0C3_SM) | (0 << CP0C3_TL))
#define MIPS_CONFIG4 \
((0 << CP0C4_M))
#define MIPS_CONFIG5 \
((0 << CP0C5_M))
/*****************************************************************************/
/* MIPS CPU definitions */
const mips_def_t mips_defs[] =
{
{
.name = "4Kc",
.CP0_PRid = 0x00018000,
.CP0_Config0 = MIPS_CONFIG0 | (MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 | (15 << CP0C1_MMU) |
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(0 << CP0C1_CA),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3,
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 4,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x1278FF17,
.SEGBITS = 32,
.PABITS = 32,
.insn_flags = CPU_MIPS32,
.mmu_type = MMU_TYPE_R4000,
},
{
.name = "4Km",
.CP0_PRid = 0x00018300,
/* Config1 implemented, fixed mapping MMU,
no virtual icache, uncached coherency. */
.CP0_Config0 = MIPS_CONFIG0 | (MMU_TYPE_FMT << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 |
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_CA),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3,
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 4,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x1258FF17,
.SEGBITS = 32,
.PABITS = 32,
.insn_flags = CPU_MIPS32 | ASE_MIPS16,
.mmu_type = MMU_TYPE_FMT,
},
{
.name = "4KEcR1",
.CP0_PRid = 0x00018400,
.CP0_Config0 = MIPS_CONFIG0 | (MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 | (15 << CP0C1_MMU) |
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(0 << CP0C1_CA),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3,
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 4,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x1278FF17,
.SEGBITS = 32,
.PABITS = 32,
.insn_flags = CPU_MIPS32,
.mmu_type = MMU_TYPE_R4000,
},
{
.name = "4KEmR1",
.CP0_PRid = 0x00018500,
.CP0_Config0 = MIPS_CONFIG0 | (MMU_TYPE_FMT << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 |
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_CA),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3,
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 4,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x1258FF17,
.SEGBITS = 32,
.PABITS = 32,
.insn_flags = CPU_MIPS32 | ASE_MIPS16,
.mmu_type = MMU_TYPE_FMT,
},
{
.name = "4KEc",
.CP0_PRid = 0x00019000,
.CP0_Config0 = MIPS_CONFIG0 | (0x1 << CP0C0_AR) |
(MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 | (15 << CP0C1_MMU) |
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(0 << CP0C1_CA),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3 | (0 << CP0C3_VInt),
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 4,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x1278FF17,
.SEGBITS = 32,
.PABITS = 32,
.insn_flags = CPU_MIPS32R2,
.mmu_type = MMU_TYPE_R4000,
},
{
.name = "4KEm",
.CP0_PRid = 0x00019100,
.CP0_Config0 = MIPS_CONFIG0 | (0x1 << CP0C0_AR) |
(MMU_TYPE_FMT << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 |
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_CA),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3,
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 4,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x1258FF17,
.SEGBITS = 32,
.PABITS = 32,
.insn_flags = CPU_MIPS32R2 | ASE_MIPS16,
.mmu_type = MMU_TYPE_FMT,
},
{
.name = "24Kc",
.CP0_PRid = 0x00019300,
.CP0_Config0 = MIPS_CONFIG0 | (0x1 << CP0C0_AR) |
(MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 | (15 << CP0C1_MMU) |
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_CA),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3 | (0 << CP0C3_VInt),
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 4,
.SYNCI_Step = 32,
.CCRes = 2,
/* No DSP implemented. */
.CP0_Status_rw_bitmask = 0x1278FF1F,
.SEGBITS = 32,
.PABITS = 32,
.insn_flags = CPU_MIPS32R2 | ASE_MIPS16,
.mmu_type = MMU_TYPE_R4000,
},
{
.name = "24KEc",
.CP0_PRid = 0x00019600,
.CP0_Config0 = MIPS_CONFIG0 | (0x1 << CP0C0_AR) |
(MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 | (15 << CP0C1_MMU) |
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_CA),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3 | (1 << CP0C3_DSPP) | (0 << CP0C3_VInt),
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 4,
.SYNCI_Step = 32,
.CCRes = 2,
/* we have a DSP, but no FPU */
.CP0_Status_rw_bitmask = 0x1378FF1F,
.SEGBITS = 32,
.PABITS = 32,
.insn_flags = CPU_MIPS32R2 | ASE_MIPS16 | ASE_DSP,
.mmu_type = MMU_TYPE_R4000,
},
{
.name = "24Kf",
.CP0_PRid = 0x00019300,
.CP0_Config0 = MIPS_CONFIG0 | (0x1 << CP0C0_AR) |
(MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 | (1 << CP0C1_FP) | (15 << CP0C1_MMU) |
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_CA),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3 | (0 << CP0C3_VInt),
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 4,
.SYNCI_Step = 32,
.CCRes = 2,
/* No DSP implemented. */
.CP0_Status_rw_bitmask = 0x3678FF1F,
.CP1_fcr0 = (1 << FCR0_F64) | (1 << FCR0_L) | (1 << FCR0_W) |
(1 << FCR0_D) | (1 << FCR0_S) | (0x93 << FCR0_PRID),
.CP1_fcr31 = 0,
.CP1_fcr31_rw_bitmask = 0xFF83FFFF,
.SEGBITS = 32,
.PABITS = 32,
.insn_flags = CPU_MIPS32R2 | ASE_MIPS16,
.mmu_type = MMU_TYPE_R4000,
},
{
.name = "34Kf",
.CP0_PRid = 0x00019500,
.CP0_Config0 = MIPS_CONFIG0 | (0x1 << CP0C0_AR) |
(MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 | (1 << CP0C1_FP) | (15 << CP0C1_MMU) |
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_CA),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3 | (1 << CP0C3_VInt) | (1 << CP0C3_MT) |
(1 << CP0C3_DSPP),
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 0,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x3778FF1F,
.CP0_TCStatus_rw_bitmask = (0 << CP0TCSt_TCU3) | (0 << CP0TCSt_TCU2) |
(1 << CP0TCSt_TCU1) | (1 << CP0TCSt_TCU0) |
(0 << CP0TCSt_TMX) | (1 << CP0TCSt_DT) |
(1 << CP0TCSt_DA) | (1 << CP0TCSt_A) |
(0x3 << CP0TCSt_TKSU) | (1 << CP0TCSt_IXMT) |
(0xff << CP0TCSt_TASID),
.CP1_fcr0 = (1 << FCR0_F64) | (1 << FCR0_L) | (1 << FCR0_W) |
(1 << FCR0_D) | (1 << FCR0_S) | (0x95 << FCR0_PRID),
.CP1_fcr31 = 0,
.CP1_fcr31_rw_bitmask = 0xFF83FFFF,
.CP0_SRSCtl = (0xf << CP0SRSCtl_HSS),
.CP0_SRSConf0_rw_bitmask = 0x3fffffff,
.CP0_SRSConf0 = (1U << CP0SRSC0_M) | (0x3fe << CP0SRSC0_SRS3) |
(0x3fe << CP0SRSC0_SRS2) | (0x3fe << CP0SRSC0_SRS1),
.CP0_SRSConf1_rw_bitmask = 0x3fffffff,
.CP0_SRSConf1 = (1U << CP0SRSC1_M) | (0x3fe << CP0SRSC1_SRS6) |
(0x3fe << CP0SRSC1_SRS5) | (0x3fe << CP0SRSC1_SRS4),
.CP0_SRSConf2_rw_bitmask = 0x3fffffff,
.CP0_SRSConf2 = (1U << CP0SRSC2_M) | (0x3fe << CP0SRSC2_SRS9) |
(0x3fe << CP0SRSC2_SRS8) | (0x3fe << CP0SRSC2_SRS7),
.CP0_SRSConf3_rw_bitmask = 0x3fffffff,
.CP0_SRSConf3 = (1U << CP0SRSC3_M) | (0x3fe << CP0SRSC3_SRS12) |
(0x3fe << CP0SRSC3_SRS11) | (0x3fe << CP0SRSC3_SRS10),
.CP0_SRSConf4_rw_bitmask = 0x3fffffff,
.CP0_SRSConf4 = (0x3fe << CP0SRSC4_SRS15) |
(0x3fe << CP0SRSC4_SRS14) | (0x3fe << CP0SRSC4_SRS13),
.SEGBITS = 32,
.PABITS = 32,
.insn_flags = CPU_MIPS32R2 | ASE_MIPS16 | ASE_DSP | ASE_MT,
.mmu_type = MMU_TYPE_R4000,
},
{
.name = "74Kf",
.CP0_PRid = 0x00019700,
.CP0_Config0 = MIPS_CONFIG0 | (0x1 << CP0C0_AR) |
(MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 | (1 << CP0C1_FP) | (15 << CP0C1_MMU) |
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_CA),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3 | (1 << CP0C3_DSP2P) | (1 << CP0C3_DSPP) |
(1 << CP0C3_VInt),
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 4,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x3778FF1F,
.CP1_fcr0 = (1 << FCR0_F64) | (1 << FCR0_L) | (1 << FCR0_W) |
(1 << FCR0_D) | (1 << FCR0_S) | (0x93 << FCR0_PRID),
.CP1_fcr31 = 0,
.CP1_fcr31_rw_bitmask = 0xFF83FFFF,
.SEGBITS = 32,
.PABITS = 32,
.insn_flags = CPU_MIPS32R2 | ASE_MIPS16 | ASE_DSP | ASE_DSP_R2,
.mmu_type = MMU_TYPE_R4000,
},
{
.name = "M14K",
.CP0_PRid = 0x00019b00,
/* Config1 implemented, fixed mapping MMU,
no virtual icache, uncached coherency. */
.CP0_Config0 = MIPS_CONFIG0 | (0x2 << CP0C0_KU) | (0x2 << CP0C0_K23) |
(0x1 << CP0C0_AR) | (MMU_TYPE_FMT << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1,
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3 | (0x2 << CP0C3_ISA) | (1 << CP0C3_VInt),
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 4,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x1258FF17,
.SEGBITS = 32,
.PABITS = 32,
.insn_flags = CPU_MIPS32R2 | ASE_MICROMIPS,
.mmu_type = MMU_TYPE_FMT,
},
{
.name = "M14Kc",
/* This is the TLB-based MMU core. */
.CP0_PRid = 0x00019c00,
.CP0_Config0 = MIPS_CONFIG0 | (0x1 << CP0C0_AR) |
(MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 | (15 << CP0C1_MMU) |
(0 << CP0C1_IS) | (3 << CP0C1_IL) | (1 << CP0C1_IA) |
(0 << CP0C1_DS) | (3 << CP0C1_DL) | (1 << CP0C1_DA),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3 | (0x2 << CP0C3_ISA) | (0 << CP0C3_VInt),
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 4,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x1278FF17,
.SEGBITS = 32,
.PABITS = 32,
.insn_flags = CPU_MIPS32R2 | ASE_MICROMIPS,
.mmu_type = MMU_TYPE_R4000,
},
{
/* FIXME:
* Config3: CMGCR, PW, VZ, CTXTC, CDMM, TL
* Config4: MMUExtDef
* Config5: MRP
* FIR(FCR0): Has2008
* */
.name = "P5600",
.CP0_PRid = 0x0001A800,
.CP0_Config0 = MIPS_CONFIG0 | (1 << CP0C0_MM) | (1 << CP0C0_AR) |
(MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 | (0x3F << CP0C1_MMU) |
(2 << CP0C1_IS) | (4 << CP0C1_IL) | (3 << CP0C1_IA) |
(2 << CP0C1_DS) | (4 << CP0C1_DL) | (3 << CP0C1_DA) |
(1 << CP0C1_PC) | (1 << CP0C1_FP),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3 | (1U << CP0C3_M) | (1 << CP0C3_MSAP) |
(1 << CP0C3_BP) | (1 << CP0C3_BI) | (1 << CP0C3_SC) |
(1 << CP0C3_ULRI) | (1 << CP0C3_RXI) | (1 << CP0C3_LPA) |
(1 << CP0C3_VInt),
.CP0_Config4 = MIPS_CONFIG4 | (1U << CP0C4_M) | (2 << CP0C4_IE) |
(0x1c << CP0C4_KScrExist),
.CP0_Config4_rw_bitmask = 0,
.CP0_Config5 = MIPS_CONFIG5 | (1 << CP0C5_EVA) | (1 << CP0C5_MVH) |
(1 << CP0C5_LLB) | (1 << CP0C5_MRP),
.CP0_Config5_rw_bitmask = (1 << CP0C5_K) | (1 << CP0C5_CV) |
(1 << CP0C5_MSAEn) | (1 << CP0C5_UFE) |
(1 << CP0C5_FRE) | (1 << CP0C5_UFR),
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 0,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x3C68FF1F,
.CP0_PageGrain_rw_bitmask = (1U << CP0PG_RIE) | (1 << CP0PG_XIE) |
(1 << CP0PG_ELPA) | (1 << CP0PG_IEC),
.CP0_EBaseWG_rw_bitmask = (1 << CP0EBase_WG),
.CP1_fcr0 = (1 << FCR0_FREP) | (1 << FCR0_UFRP) | (1 << FCR0_HAS2008) |
(1 << FCR0_F64) | (1 << FCR0_L) | (1 << FCR0_W) |
(1 << FCR0_D) | (1 << FCR0_S) | (0x03 << FCR0_PRID),
.CP1_fcr31 = (1 << FCR31_ABS2008) | (1 << FCR31_NAN2008),
.CP1_fcr31_rw_bitmask = 0xFF83FFFF,
.SEGBITS = 32,
.PABITS = 40,
.insn_flags = CPU_MIPS32R5 | ASE_MSA,
.mmu_type = MMU_TYPE_R4000,
},
{
/* A generic CPU supporting MIPS32 Release 6 ISA.
FIXME: Support IEEE 754-2008 FP.
Eventually this should be replaced by a real CPU model. */
.name = "mips32r6-generic",
.CP0_PRid = 0x00010000,
.CP0_Config0 = MIPS_CONFIG0 | (0x2 << CP0C0_AR) |
(MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 | (1 << CP0C1_FP) | (31 << CP0C1_MMU) |
(2 << CP0C1_IS) | (4 << CP0C1_IL) | (3 << CP0C1_IA) |
(2 << CP0C1_DS) | (4 << CP0C1_DL) | (3 << CP0C1_DA) |
(0 << CP0C1_PC) | (1 << CP0C1_WR) | (1 << CP0C1_EP),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3 | (1 << CP0C3_BP) | (1 << CP0C3_BI) |
(2 << CP0C3_ISA) | (1 << CP0C3_ULRI) |
(1 << CP0C3_RXI) | (1U << CP0C3_M),
.CP0_Config4 = MIPS_CONFIG4 | (0xfc << CP0C4_KScrExist) |
(3 << CP0C4_IE) | (1U << CP0C4_M),
.CP0_Config5 = MIPS_CONFIG5 | (1 << CP0C5_XNP) | (1 << CP0C5_LLB),
.CP0_Config5_rw_bitmask = (1 << CP0C5_SBRI) | (1 << CP0C5_FRE) |
(1 << CP0C5_UFE),
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 0,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x3058FF1F,
.CP0_PageGrain = (1 << CP0PG_IEC) | (1 << CP0PG_XIE) |
(1U << CP0PG_RIE),
.CP0_PageGrain_rw_bitmask = 0,
.CP1_fcr0 = (1 << FCR0_FREP) | (1 << FCR0_HAS2008) | (1 << FCR0_F64) |
(1 << FCR0_L) | (1 << FCR0_W) | (1 << FCR0_D) |
(1 << FCR0_S) | (0x00 << FCR0_PRID) | (0x0 << FCR0_REV),
.CP1_fcr31 = (1 << FCR31_ABS2008) | (1 << FCR31_NAN2008),
.CP1_fcr31_rw_bitmask = 0x0103FFFF,
.SEGBITS = 32,
.PABITS = 32,
.insn_flags = CPU_MIPS32R6 | ASE_MICROMIPS,
.mmu_type = MMU_TYPE_R4000,
},
{
.name = "I7200",
.CP0_PRid = 0x00010000,
.CP0_Config0 = MIPS_CONFIG0 | (1 << CP0C0_MM) | (0x2 << CP0C0_AR) |
(MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = (1U << CP0C1_M) | (15 << CP0C1_MMU) | (2 << CP0C1_IS) |
(4 << CP0C1_IL) | (3 << CP0C1_IA) | (2 << CP0C1_DS) |
(4 << CP0C1_DL) | (3 << CP0C1_DA) | (1 << CP0C1_PC) |
(1 << CP0C1_EP),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3 | (1U << CP0C3_M) | (1 << CP0C3_CMGCR) |
(1 << CP0C3_BI) | (1 << CP0C3_SC) | (3 << CP0C3_MMAR) |
(1 << CP0C3_ISA_ON_EXC) | (1 << CP0C3_ISA) |
(1 << CP0C3_ULRI) | (1 << CP0C3_RXI) |
(1 << CP0C3_DSP2P) | (1 << CP0C3_DSPP) |
(1 << CP0C3_CTXTC) | (1 << CP0C3_VInt) |
(1 << CP0C3_CDMM) | (1 << CP0C3_MT) | (1 << CP0C3_TL),
.CP0_Config4 = MIPS_CONFIG4 | (0xfc << CP0C4_KScrExist) |
(2 << CP0C4_IE) | (1U << CP0C4_M),
.CP0_Config5 = MIPS_CONFIG5 | (1 << CP0C5_MVH) | (1 << CP0C5_LLB),
.CP0_Config5_rw_bitmask = (1 << CP0C5_SBRI) | (1 << CP0C5_FRE) |
(1 << CP0C5_UFE),
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 0,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x3158FF1F,
.CP0_PageGrain = (1 << CP0PG_IEC) | (1 << CP0PG_XIE) |
(1U << CP0PG_RIE),
.CP0_PageGrain_rw_bitmask = 0,
.CP1_fcr0 = (1 << FCR0_FREP) | (1 << FCR0_HAS2008) | (1 << FCR0_F64) |
(1 << FCR0_L) | (1 << FCR0_W) | (1 << FCR0_D) |
(1 << FCR0_S) | (0x02 << FCR0_PRID) | (0x0 << FCR0_REV),
.CP1_fcr31 = (1 << FCR31_ABS2008) | (1 << FCR31_NAN2008),
.SEGBITS = 32,
.PABITS = 32,
.insn_flags = CPU_NANOMIPS32 | ASE_DSP | ASE_DSP_R2 | ASE_DSP_R3 |
ASE_MT,
.mmu_type = MMU_TYPE_R4000,
},
#if defined(TARGET_MIPS64)
{
.name = "R4000",
.CP0_PRid = 0x00000400,
/* No L2 cache, icache size 8k, dcache size 8k, uncached coherency. */
.CP0_Config0 = (1 << 17) | (0x1 << 9) | (0x1 << 6) | (0x2 << CP0C0_K0),
/* Note: Config1 is only used internally, the R4000 has only Config0. */
.CP0_Config1 = (1 << CP0C1_FP) | (47 << CP0C1_MMU),
.CP0_LLAddr_rw_bitmask = 0xFFFFFFFF,
.CP0_LLAddr_shift = 4,
.SYNCI_Step = 16,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x3678FFFF,
/* The R4000 has a full 64bit FPU but doesn't use the fcr0 bits. */
.CP1_fcr0 = (0x5 << FCR0_PRID) | (0x0 << FCR0_REV),
.CP1_fcr31 = 0,
.CP1_fcr31_rw_bitmask = 0x0183FFFF,
.SEGBITS = 40,
.PABITS = 36,
.insn_flags = CPU_MIPS3,
.mmu_type = MMU_TYPE_R4000,
},
{
.name = "VR5432",
.CP0_PRid = 0x00005400,
/* No L2 cache, icache size 8k, dcache size 8k, uncached coherency. */
.CP0_Config0 = (1 << 17) | (0x1 << 9) | (0x1 << 6) | (0x2 << CP0C0_K0),
.CP0_Config1 = (1 << CP0C1_FP) | (47 << CP0C1_MMU),
.CP0_LLAddr_rw_bitmask = 0xFFFFFFFFL,
.CP0_LLAddr_shift = 4,
.SYNCI_Step = 16,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x3678FFFF,
/* The VR5432 has a full 64bit FPU but doesn't use the fcr0 bits. */
.CP1_fcr0 = (0x54 << FCR0_PRID) | (0x0 << FCR0_REV),
.CP1_fcr31 = 0,
.CP1_fcr31_rw_bitmask = 0xFF83FFFF,
.SEGBITS = 40,
.PABITS = 32,
.insn_flags = CPU_VR54XX,
.mmu_type = MMU_TYPE_R4000,
},
{
.name = "5Kc",
.CP0_PRid = 0x00018100,
.CP0_Config0 = MIPS_CONFIG0 | (0x2 << CP0C0_AT) |
(MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 | (31 << CP0C1_MMU) |
(1 << CP0C1_IS) | (4 << CP0C1_IL) | (1 << CP0C1_IA) |
(1 << CP0C1_DS) | (4 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_PC) | (1 << CP0C1_WR) | (1 << CP0C1_EP),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3,
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 4,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x12F8FFFF,
.SEGBITS = 42,
.PABITS = 36,
.insn_flags = CPU_MIPS64,
.mmu_type = MMU_TYPE_R4000,
},
{
.name = "5Kf",
.CP0_PRid = 0x00018100,
.CP0_Config0 = MIPS_CONFIG0 | (0x2 << CP0C0_AT) |
(MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 | (1 << CP0C1_FP) | (31 << CP0C1_MMU) |
(1 << CP0C1_IS) | (4 << CP0C1_IL) | (1 << CP0C1_IA) |
(1 << CP0C1_DS) | (4 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_PC) | (1 << CP0C1_WR) | (1 << CP0C1_EP),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3,
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 4,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x36F8FFFF,
/* The 5Kf has F64 / L / W but doesn't use the fcr0 bits. */
.CP1_fcr0 = (1 << FCR0_D) | (1 << FCR0_S) |
(0x81 << FCR0_PRID) | (0x0 << FCR0_REV),
.CP1_fcr31 = 0,
.CP1_fcr31_rw_bitmask = 0xFF83FFFF,
.SEGBITS = 42,
.PABITS = 36,
.insn_flags = CPU_MIPS64,
.mmu_type = MMU_TYPE_R4000,
},
{
.name = "20Kc",
/* We emulate a later version of the 20Kc, earlier ones had a broken
WAIT instruction. */
.CP0_PRid = 0x000182a0,
.CP0_Config0 = MIPS_CONFIG0 | (0x2 << CP0C0_AT) |
(MMU_TYPE_R4000 << CP0C0_MT) | (1 << CP0C0_VI),
.CP0_Config1 = MIPS_CONFIG1 | (1 << CP0C1_FP) | (47 << CP0C1_MMU) |
(2 << CP0C1_IS) | (4 << CP0C1_IL) | (3 << CP0C1_IA) |
(2 << CP0C1_DS) | (4 << CP0C1_DL) | (3 << CP0C1_DA) |
(1 << CP0C1_PC) | (1 << CP0C1_WR) | (1 << CP0C1_EP),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3,
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 0,
.SYNCI_Step = 32,
.CCRes = 1,
.CP0_Status_rw_bitmask = 0x36FBFFFF,
/* The 20Kc has F64 / L / W but doesn't use the fcr0 bits. */
.CP1_fcr0 = (1 << FCR0_3D) | (1 << FCR0_PS) |
(1 << FCR0_D) | (1 << FCR0_S) |
(0x82 << FCR0_PRID) | (0x0 << FCR0_REV),
.CP1_fcr31 = 0,
.CP1_fcr31_rw_bitmask = 0xFF83FFFF,
.SEGBITS = 40,
.PABITS = 36,
.insn_flags = CPU_MIPS64 | ASE_MIPS3D,
.mmu_type = MMU_TYPE_R4000,
},
{
/* A generic CPU providing MIPS64 Release 2 features.
FIXME: Eventually this should be replaced by a real CPU model. */
.name = "MIPS64R2-generic",
.CP0_PRid = 0x00010000,
.CP0_Config0 = MIPS_CONFIG0 | (0x1 << CP0C0_AR) | (0x2 << CP0C0_AT) |
(MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 | (1 << CP0C1_FP) | (63 << CP0C1_MMU) |
(2 << CP0C1_IS) | (4 << CP0C1_IL) | (3 << CP0C1_IA) |
(2 << CP0C1_DS) | (4 << CP0C1_DL) | (3 << CP0C1_DA) |
(1 << CP0C1_PC) | (1 << CP0C1_WR) | (1 << CP0C1_EP),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3 | (1 << CP0C3_LPA),
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 0,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x36FBFFFF,
.CP0_EBaseWG_rw_bitmask = (1 << CP0EBase_WG),
.CP1_fcr0 = (1 << FCR0_F64) | (1 << FCR0_3D) | (1 << FCR0_PS) |
(1 << FCR0_L) | (1 << FCR0_W) | (1 << FCR0_D) |
(1 << FCR0_S) | (0x00 << FCR0_PRID) | (0x0 << FCR0_REV),
.CP1_fcr31 = 0,
.CP1_fcr31_rw_bitmask = 0xFF83FFFF,
.SEGBITS = 42,
.PABITS = 36,
.insn_flags = CPU_MIPS64R2 | ASE_MIPS3D,
.mmu_type = MMU_TYPE_R4000,
},
{
.name = "5KEc",
.CP0_PRid = 0x00018900,
.CP0_Config0 = MIPS_CONFIG0 | (0x1 << CP0C0_AR) | (0x2 << CP0C0_AT) |
(MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 | (31 << CP0C1_MMU) |
(1 << CP0C1_IS) | (4 << CP0C1_IL) | (1 << CP0C1_IA) |
(1 << CP0C1_DS) | (4 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_PC) | (1 << CP0C1_WR) | (1 << CP0C1_EP),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3,
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 4,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x12F8FFFF,
.SEGBITS = 42,
.PABITS = 36,
.insn_flags = CPU_MIPS64R2,
.mmu_type = MMU_TYPE_R4000,
},
{
.name = "5KEf",
.CP0_PRid = 0x00018900,
.CP0_Config0 = MIPS_CONFIG0 | (0x1 << CP0C0_AR) | (0x2 << CP0C0_AT) |
(MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 | (1 << CP0C1_FP) | (31 << CP0C1_MMU) |
(1 << CP0C1_IS) | (4 << CP0C1_IL) | (1 << CP0C1_IA) |
(1 << CP0C1_DS) | (4 << CP0C1_DL) | (1 << CP0C1_DA) |
(1 << CP0C1_PC) | (1 << CP0C1_WR) | (1 << CP0C1_EP),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3,
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 4,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x36F8FFFF,
.CP1_fcr0 = (1 << FCR0_F64) | (1 << FCR0_L) | (1 << FCR0_W) |
(1 << FCR0_D) | (1 << FCR0_S) |
(0x89 << FCR0_PRID) | (0x0 << FCR0_REV),
.SEGBITS = 42,
.PABITS = 36,
.insn_flags = CPU_MIPS64R2,
.mmu_type = MMU_TYPE_R4000,
},
{
.name = "I6400",
.CP0_PRid = 0x1A900,
.CP0_Config0 = MIPS_CONFIG0 | (0x2 << CP0C0_AR) | (0x2 << CP0C0_AT) |
(MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 | (1 << CP0C1_FP) | (15 << CP0C1_MMU) |
(2 << CP0C1_IS) | (5 << CP0C1_IL) | (3 << CP0C1_IA) |
(2 << CP0C1_DS) | (5 << CP0C1_DL) | (3 << CP0C1_DA) |
(0 << CP0C1_PC) | (1 << CP0C1_WR) | (1 << CP0C1_EP),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3 | (1U << CP0C3_M) |
(1 << CP0C3_CMGCR) | (1 << CP0C3_MSAP) |
(1 << CP0C3_BP) | (1 << CP0C3_BI) | (1 << CP0C3_ULRI) |
(1 << CP0C3_RXI) | (1 << CP0C3_LPA) | (1 << CP0C3_VInt),
.CP0_Config4 = MIPS_CONFIG4 | (1U << CP0C4_M) | (3 << CP0C4_IE) |
(1 << CP0C4_AE) | (0xfc << CP0C4_KScrExist),
.CP0_Config5 = MIPS_CONFIG5 | (1 << CP0C5_XNP) | (1 << CP0C5_VP) |
(1 << CP0C5_LLB) | (1 << CP0C5_MRP),
.CP0_Config5_rw_bitmask = (1 << CP0C5_MSAEn) | (1 << CP0C5_SBRI) |
(1 << CP0C5_FRE) | (1 << CP0C5_UFE),
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 0,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x30D8FFFF,
.CP0_PageGrain = (1 << CP0PG_IEC) | (1 << CP0PG_XIE) |
(1U << CP0PG_RIE),
.CP0_PageGrain_rw_bitmask = (1 << CP0PG_ELPA),
.CP0_EBaseWG_rw_bitmask = (1 << CP0EBase_WG),
.CP1_fcr0 = (1 << FCR0_FREP) | (1 << FCR0_HAS2008) | (1 << FCR0_F64) |
(1 << FCR0_L) | (1 << FCR0_W) | (1 << FCR0_D) |
(1 << FCR0_S) | (0x03 << FCR0_PRID) | (0x0 << FCR0_REV),
.CP1_fcr31 = (1 << FCR31_ABS2008) | (1 << FCR31_NAN2008),
.CP1_fcr31_rw_bitmask = 0x0103FFFF,
.MSAIR = 0x03 << MSAIR_ProcID,
.SEGBITS = 48,
.PABITS = 48,
.insn_flags = CPU_MIPS64R6 | ASE_MSA,
.mmu_type = MMU_TYPE_R4000,
},
{
.name = "I6500",
.CP0_PRid = 0x1B000,
.CP0_Config0 = MIPS_CONFIG0 | (0x2 << CP0C0_AR) | (0x2 << CP0C0_AT) |
(MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 | (1 << CP0C1_FP) | (15 << CP0C1_MMU) |
(2 << CP0C1_IS) | (5 << CP0C1_IL) | (3 << CP0C1_IA) |
(2 << CP0C1_DS) | (5 << CP0C1_DL) | (3 << CP0C1_DA) |
(0 << CP0C1_PC) | (1 << CP0C1_WR) | (1 << CP0C1_EP),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3 | (1U << CP0C3_M) |
(1 << CP0C3_CMGCR) | (1 << CP0C3_MSAP) |
(1 << CP0C3_BP) | (1 << CP0C3_BI) | (1 << CP0C3_ULRI) |
(1 << CP0C3_RXI) | (1 << CP0C3_LPA) | (1 << CP0C3_VInt),
.CP0_Config4 = MIPS_CONFIG4 | (1U << CP0C4_M) | (3 << CP0C4_IE) |
(1 << CP0C4_AE) | (0xfc << CP0C4_KScrExist),
.CP0_Config5 = MIPS_CONFIG5 | (1 << CP0C5_XNP) | (1 << CP0C5_VP) |
(1 << CP0C5_LLB) | (1 << CP0C5_MRP),
.CP0_Config5_rw_bitmask = (1 << CP0C5_MSAEn) | (1 << CP0C5_SBRI) |
(1 << CP0C5_FRE) | (1 << CP0C5_UFE),
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 0,
.SYNCI_Step = 64,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x30D8FFFF,
.CP0_PageGrain = (1 << CP0PG_IEC) | (1 << CP0PG_XIE) |
(1U << CP0PG_RIE),
.CP0_PageGrain_rw_bitmask = (1 << CP0PG_ELPA),
.CP0_EBaseWG_rw_bitmask = (1 << CP0EBase_WG),
.CP1_fcr0 = (1 << FCR0_FREP) | (1 << FCR0_HAS2008) | (1 << FCR0_F64) |
(1 << FCR0_L) | (1 << FCR0_W) | (1 << FCR0_D) |
(1 << FCR0_S) | (0x03 << FCR0_PRID) | (0x0 << FCR0_REV),
.CP1_fcr31 = (1 << FCR31_ABS2008) | (1 << FCR31_NAN2008),
.CP1_fcr31_rw_bitmask = 0x0103FFFF,
.MSAIR = 0x03 << MSAIR_ProcID,
.SEGBITS = 48,
.PABITS = 48,
.insn_flags = CPU_MIPS64R6 | ASE_MSA,
.mmu_type = MMU_TYPE_R4000,
},
{
.name = "Loongson-2E",
.CP0_PRid = 0x6302,
/* 64KB I-cache and d-cache. 4 way with 32 bit cache line size. */
.CP0_Config0 = (0x1<<17) | (0x1<<16) | (0x1<<11) | (0x1<<8) |
(0x1<<5) | (0x1<<4) | (0x1<<1),
/* Note: Config1 is only used internally,
Loongson-2E has only Config0. */
.CP0_Config1 = (1 << CP0C1_FP) | (47 << CP0C1_MMU),
.SYNCI_Step = 16,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x35D0FFFF,
.CP1_fcr0 = (0x5 << FCR0_PRID) | (0x1 << FCR0_REV),
.CP1_fcr31 = 0,
.CP1_fcr31_rw_bitmask = 0xFF83FFFF,
.SEGBITS = 40,
.PABITS = 40,
.insn_flags = CPU_LOONGSON2E,
.mmu_type = MMU_TYPE_R4000,
},
{
.name = "Loongson-2F",
.CP0_PRid = 0x6303,
/* 64KB I-cache and d-cache. 4 way with 32 bit cache line size. */
.CP0_Config0 = (0x1<<17) | (0x1<<16) | (0x1<<11) | (0x1<<8) |
(0x1<<5) | (0x1<<4) | (0x1<<1),
/* Note: Config1 is only used internally,
Loongson-2F has only Config0. */
.CP0_Config1 = (1 << CP0C1_FP) | (47 << CP0C1_MMU),
.SYNCI_Step = 16,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0xF5D0FF1F, /* Bits 7:5 not writable. */
.CP1_fcr0 = (0x5 << FCR0_PRID) | (0x1 << FCR0_REV),
.CP1_fcr31 = 0,
.CP1_fcr31_rw_bitmask = 0xFF83FFFF,
.SEGBITS = 40,
.PABITS = 40,
.insn_flags = CPU_LOONGSON2F,
.mmu_type = MMU_TYPE_R4000,
},
{
/* A generic CPU providing MIPS64 DSP R2 ASE features.
FIXME: Eventually this should be replaced by a real CPU model. */
.name = "mips64dspr2",
.CP0_PRid = 0x00010000,
.CP0_Config0 = MIPS_CONFIG0 | (0x1 << CP0C0_AR) | (0x2 << CP0C0_AT) |
(MMU_TYPE_R4000 << CP0C0_MT),
.CP0_Config1 = MIPS_CONFIG1 | (1 << CP0C1_FP) | (63 << CP0C1_MMU) |
(2 << CP0C1_IS) | (4 << CP0C1_IL) | (3 << CP0C1_IA) |
(2 << CP0C1_DS) | (4 << CP0C1_DL) | (3 << CP0C1_DA) |
(1 << CP0C1_PC) | (1 << CP0C1_WR) | (1 << CP0C1_EP),
.CP0_Config2 = MIPS_CONFIG2,
.CP0_Config3 = MIPS_CONFIG3 | (1U << CP0C3_M) | (1 << CP0C3_DSP2P) |
(1 << CP0C3_DSPP) | (1 << CP0C3_LPA),
.CP0_LLAddr_rw_bitmask = 0,
.CP0_LLAddr_shift = 0,
.SYNCI_Step = 32,
.CCRes = 2,
.CP0_Status_rw_bitmask = 0x37FBFFFF,
.CP1_fcr0 = (1 << FCR0_F64) | (1 << FCR0_3D) | (1 << FCR0_PS) |
(1 << FCR0_L) | (1 << FCR0_W) | (1 << FCR0_D) |
(1 << FCR0_S) | (0x00 << FCR0_PRID) | (0x0 << FCR0_REV),
.CP1_fcr31 = 0,
.CP1_fcr31_rw_bitmask = 0xFF83FFFF,
.SEGBITS = 42,
.PABITS = 36,
.insn_flags = CPU_MIPS64R2 | ASE_DSP | ASE_DSP_R2,
.mmu_type = MMU_TYPE_R4000,
},
#endif
};
const int mips_defs_number = ARRAY_SIZE(mips_defs);
static void no_mmu_init (CPUMIPSState *env, const mips_def_t *def)
{
env->tlb->nb_tlb = 1;
env->tlb->map_address = &no_mmu_map_address;
}
static void fixed_mmu_init (CPUMIPSState *env, const mips_def_t *def)
{
env->tlb->nb_tlb = 1;
env->tlb->map_address = &fixed_mmu_map_address;
}
static void r4k_mmu_init (CPUMIPSState *env, const mips_def_t *def)
{
env->tlb->nb_tlb = 1 + ((def->CP0_Config1 >> CP0C1_MMU) & 63);
env->tlb->map_address = &r4k_map_address;
env->tlb->helper_tlbwi = r4k_helper_tlbwi;
env->tlb->helper_tlbwr = r4k_helper_tlbwr;
env->tlb->helper_tlbp = r4k_helper_tlbp;
env->tlb->helper_tlbr = r4k_helper_tlbr;
env->tlb->helper_tlbinv = r4k_helper_tlbinv;
env->tlb->helper_tlbinvf = r4k_helper_tlbinvf;
}
static void mmu_init (CPUMIPSState *env, const mips_def_t *def)
{
env->tlb = g_malloc0(sizeof(CPUMIPSTLBContext));
switch (def->mmu_type) {
case MMU_TYPE_NONE:
no_mmu_init(env, def);
break;
case MMU_TYPE_R4000:
r4k_mmu_init(env, def);
break;
case MMU_TYPE_FMT:
fixed_mmu_init(env, def);
break;
case MMU_TYPE_R3000:
case MMU_TYPE_R6000:
case MMU_TYPE_R8000:
default:
cpu_abort(env_cpu(env), "MMU type not supported\n");
}
}
static void fpu_init (CPUMIPSState *env, const mips_def_t *def)
{
int i;
for (i = 0; i < MIPS_FPU_MAX; i++)
env->fpus[i].fcr0 = def->CP1_fcr0;
memcpy(&env->active_fpu, &env->fpus[0], sizeof(env->active_fpu));
}
static void mvp_init (CPUMIPSState *env, const mips_def_t *def)
{
env->mvp = g_malloc0(sizeof(CPUMIPSMVPContext));
/* MVPConf1 implemented, TLB sharable, no gating storage support,
programmable cache partitioning implemented, number of allocatable
and sharable TLB entries, MVP has allocatable TCs, 2 VPEs
implemented, 5 TCs implemented. */
env->mvp->CP0_MVPConf0 = (1U << CP0MVPC0_M) | (1 << CP0MVPC0_TLBS) |
(0 << CP0MVPC0_GS) | (1 << CP0MVPC0_PCP) |
// TODO: actually do 2 VPEs.
// (1 << CP0MVPC0_TCA) | (0x1 << CP0MVPC0_PVPE) |
// (0x04 << CP0MVPC0_PTC);
(1 << CP0MVPC0_TCA) | (0x0 << CP0MVPC0_PVPE) |
(0x00 << CP0MVPC0_PTC);
/* Usermode has no TLB support */
env->mvp->CP0_MVPConf0 |= (env->tlb->nb_tlb << CP0MVPC0_PTLBE);
/* Allocatable CP1 have media extensions, allocatable CP1 have FP support,
no UDI implemented, no CP2 implemented, 1 CP1 implemented. */
env->mvp->CP0_MVPConf1 = (1U << CP0MVPC1_CIM) | (1 << CP0MVPC1_CIF) |
(0x0 << CP0MVPC1_PCX) | (0x0 << CP0MVPC1_PCP2) |
(0x1 << CP0MVPC1_PCP1);
}
static void msa_reset(CPUMIPSState *env)
{
/* MSA CSR:
- non-signaling floating point exception mode off (NX bit is 0)
- Cause, Enables, and Flags are all 0
- round to nearest / ties to even (RM bits are 0) */
env->active_tc.msacsr = 0;
restore_msa_fp_status(env);
/* tininess detected after rounding.*/
set_float_detect_tininess(float_tininess_after_rounding,
&env->active_tc.msa_fp_status);
/* clear float_status exception flags */
set_float_exception_flags(0, &env->active_tc.msa_fp_status);
/* clear float_status nan mode */
set_default_nan_mode(0, &env->active_tc.msa_fp_status);
/* set proper signanling bit meaning ("1" means "quiet") */
set_snan_bit_is_one(0, &env->active_tc.msa_fp_status);
}

239
qemu/target/mips/unicorn.c Normal file
View File

@@ -0,0 +1,239 @@
/* Unicorn Emulator Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2015 */
/* Modified for Unicorn Engine by Chen Huitao<chenhuitao@hfmrit.com>, 2020 */
#include "sysemu/cpus.h"
#include "cpu.h"
#include "unicorn_common.h"
#include "uc_priv.h"
#include "unicorn.h"
#ifdef TARGET_MIPS64
typedef uint64_t mipsreg_t;
#else
typedef uint32_t mipsreg_t;
#endif
MIPSCPU *cpu_mips_init(struct uc_struct *uc, const char *cpu_model);
static uint64_t mips_mem_redirect(uint64_t address)
{
// kseg0 range masks off high address bit
if (address >= 0x80000000 && address <= 0x9fffffff)
return address & 0x7fffffff;
// kseg1 range masks off top 3 address bits
if (address >= 0xa0000000 && address <= 0xbfffffff) {
return address & 0x1fffffff;
}
// no redirect
return address;
}
static void mips_set_pc(struct uc_struct *uc, uint64_t address)
{
((CPUMIPSState *)uc->cpu->env_ptr)->active_tc.PC = address;
}
static void mips_release(void *ctx)
{
int i;
TCGContext *tcg_ctx = (TCGContext *)ctx;
MIPSCPU *cpu = (MIPSCPU *)tcg_ctx->uc->cpu;
CPUTLBDesc *d = cpu->neg.tlb.d;
CPUTLBDescFast *f = cpu->neg.tlb.f;
CPUTLBDesc *desc;
CPUTLBDescFast *fast;
release_common(ctx);
for (i = 0; i < NB_MMU_MODES; i++) {
desc = &(d[i]);
fast = &(f[i]);
g_free(desc->iotlb);
g_free(fast->table);
}
g_free(cpu->env.mvp);
g_free(cpu->env.tlb);
}
void mips_reg_reset(struct uc_struct *uc)
{
CPUArchState *env;
(void)uc;
env = uc->cpu->env_ptr;
memset(env->active_tc.gpr, 0, sizeof(env->active_tc.gpr));
env->active_tc.PC = 0;
}
static void reg_read(CPUMIPSState *env, unsigned int regid, void *value)
{
if (regid >= UC_MIPS_REG_0 && regid <= UC_MIPS_REG_31)
*(mipsreg_t *)value = env->active_tc.gpr[regid - UC_MIPS_REG_0];
else {
switch(regid) {
default: break;
case UC_MIPS_REG_PC:
*(mipsreg_t *)value = env->active_tc.PC;
break;
case UC_MIPS_REG_CP0_CONFIG3:
*(mipsreg_t *)value = env->CP0_Config3;
break;
case UC_MIPS_REG_CP0_USERLOCAL:
*(mipsreg_t *)value = env->active_tc.CP0_UserLocal;
break;
}
}
return;
}
static void reg_write(CPUMIPSState *env, unsigned int regid, const void *value)
{
if (regid >= UC_MIPS_REG_0 && regid <= UC_MIPS_REG_31)
env->active_tc.gpr[regid - UC_MIPS_REG_0] = *(mipsreg_t *)value;
else {
switch(regid) {
default: break;
case UC_MIPS_REG_PC:
env->active_tc.PC = *(mipsreg_t *)value;
break;
case UC_MIPS_REG_CP0_CONFIG3:
env->CP0_Config3 = *(mipsreg_t *)value;
break;
case UC_MIPS_REG_CP0_USERLOCAL:
env->active_tc.CP0_UserLocal = *(mipsreg_t *)value;
break;
}
}
return;
}
int mips_reg_read(struct uc_struct *uc, unsigned int *regs, void **vals, int count)
{
CPUMIPSState *env = &(MIPS_CPU(uc->cpu)->env);
int i;
for (i = 0; i < count; i++) {
unsigned int regid = regs[i];
void *value = vals[i];
reg_read(env, regid, value);
}
return 0;
}
int mips_reg_write(struct uc_struct *uc, unsigned int *regs, void *const *vals, int count)
{
CPUMIPSState *env = &(MIPS_CPU(uc->cpu)->env);
int i;
for (i = 0; i < count; i++) {
unsigned int regid = regs[i];
const void *value = vals[i];
reg_write(env, regid, value);
if(regid == UC_MIPS_REG_PC){
// force to quit execution and flush TB
uc->quit_request = true;
uc_emu_stop(uc);
}
}
return 0;
}
DEFAULT_VISIBILITY
#ifdef TARGET_MIPS64
#ifdef TARGET_WORDS_BIGENDIAN
int mips64_context_reg_read(struct uc_context *ctx, unsigned int *regs, void **vals, int count)
#else
int mips64el_context_reg_read(struct uc_context *ctx, unsigned int *regs, void **vals, int count)
#endif
#else // if TARGET_MIPS
#ifdef TARGET_WORDS_BIGENDIAN
int mips_context_reg_read(struct uc_context *ctx, unsigned int *regs, void **vals, int count)
#else
int mipsel_context_reg_read(struct uc_context *ctx, unsigned int *regs, void **vals, int count)
#endif
#endif
{
CPUMIPSState *env = (CPUMIPSState *)ctx->data;
int i;
for (i = 0; i < count; i++) {
unsigned int regid = regs[i];
void *value = vals[i];
reg_read(env, regid, value);
}
return 0;
}
DEFAULT_VISIBILITY
#ifdef TARGET_MIPS64
#ifdef TARGET_WORDS_BIGENDIAN
int mips64_context_reg_write(struct uc_context *ctx, unsigned int *regs, void *const *vals, int count)
#else
int mips64el_context_reg_write(struct uc_context *ctx, unsigned int *regs, void *const *vals, int count)
#endif
#else // if TARGET_MIPS
#ifdef TARGET_WORDS_BIGENDIAN
int mips_context_reg_write(struct uc_context *ctx, unsigned int *regs, void *const *vals, int count)
#else
int mipsel_context_reg_write(struct uc_context *ctx, unsigned int *regs, void *const *vals, int count)
#endif
#endif
{
CPUMIPSState *env = (CPUMIPSState *)ctx->data;
int i;
for (i = 0; i < count; i++) {
unsigned int regid = regs[i];
const void *value = vals[i];
reg_write(env, regid, value);
}
return 0;
}
static int mips_cpus_init(struct uc_struct *uc, const char *cpu_model)
{
MIPSCPU *cpu;
cpu = cpu_mips_init(uc, NULL);
if (cpu == NULL) {
return -1;
}
return 0;
}
DEFAULT_VISIBILITY
#ifdef TARGET_MIPS64
#ifdef TARGET_WORDS_BIGENDIAN
void mips64_uc_init(struct uc_struct* uc)
#else
void mips64el_uc_init(struct uc_struct* uc)
#endif
#else // if TARGET_MIPS
#ifdef TARGET_WORDS_BIGENDIAN
void mips_uc_init(struct uc_struct* uc)
#else
void mipsel_uc_init(struct uc_struct* uc)
#endif
#endif
{
uc->reg_read = mips_reg_read;
uc->reg_write = mips_reg_write;
uc->reg_reset = mips_reg_reset;
uc->release = mips_release;
uc->set_pc = mips_set_pc;
uc->mem_redirect = mips_mem_redirect;
uc->cpus_init = mips_cpus_init;
uc->cpu_context_size = offsetof(CPUMIPSState, end_reset_fields);
uc_common_init(uc);
}

View File

@@ -0,0 +1,26 @@
/* Unicorn Emulator Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2015 */
#ifndef UC_QEMU_TARGET_MIPS_H
#define UC_QEMU_TARGET_MIPS_H
// functions to read & write registers
int mips_reg_read(struct uc_struct *uc, unsigned int *regs, void **vals, int count);
int mips_reg_write(struct uc_struct *uc, unsigned int *regs, void *const *vals, int count);
int mips_context_reg_read(struct uc_context *ctx, unsigned int *regs, void **vals, int count);
int mips_context_reg_write(struct uc_context *ctx, unsigned int *regs, void *const *vals, int count);
int mipsel_context_reg_read(struct uc_context *ctx, unsigned int *regs, void **vals, int count);
int mipsel_context_reg_write(struct uc_context *ctx, unsigned int *regs, void *const *vals, int count);
int mips64_context_reg_read(struct uc_context *ctx, unsigned int *regs, void **vals, int count);
int mips64_context_reg_write(struct uc_context *ctx, unsigned int *regs, void *const *vals, int count);
int mips64el_context_reg_read(struct uc_context *ctx, unsigned int *regs, void **vals, int count);
int mips64el_context_reg_write(struct uc_context *ctx, unsigned int *regs, void *const *vals, int count);
void mips_reg_reset(struct uc_struct *uc);
void mips_uc_init(struct uc_struct* uc);
void mipsel_uc_init(struct uc_struct* uc);
void mips64_uc_init(struct uc_struct* uc);
void mips64el_uc_init(struct uc_struct* uc);
#endif